留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石灰性污染土壤中重金属镉、铅的活化研究

邢维芹 陈小亚 毛凯 李冲 龚佳荣 王亚利 白红娟 李立平

邢维芹, 陈小亚, 毛 凯, 李 冲, 龚佳荣, 王亚利, 白红娟, 李立平. 石灰性污染土壤中重金属镉、铅的活化研究[J]. 土壤通报, 2021, 52(1): 185 − 191 doi: 10.19336/j.cnki.trtb.2020070501
引用本文: 邢维芹, 陈小亚, 毛 凯, 李 冲, 龚佳荣, 王亚利, 白红娟, 李立平. 石灰性污染土壤中重金属镉、铅的活化研究[J]. 土壤通报, 2021, 52(1): 185 − 191 doi: 10.19336/j.cnki.trtb.2020070501
XING Wei-qin, CHEN Xiao-ya, MAO Kai, LI Chong, GONG Jia-rong, WANG Ya-li, BAI Hong-juan, LI Li-ping. Activation of Heavy Metals Cd and Pb in Contaminated Calcareous Soils[J]. Chinese Journal of Soil Science, 2021, 52(1): 185 − 191 doi: 10.19336/j.cnki.trtb.2020070501
Citation: XING Wei-qin, CHEN Xiao-ya, MAO Kai, LI Chong, GONG Jia-rong, WANG Ya-li, BAI Hong-juan, LI Li-ping. Activation of Heavy Metals Cd and Pb in Contaminated Calcareous Soils[J]. Chinese Journal of Soil Science, 2021, 52(1): 185 − 191 doi: 10.19336/j.cnki.trtb.2020070501

石灰性污染土壤中重金属镉、铅的活化研究

doi: 10.19336/j.cnki.trtb.2020070501
基金项目: 国家重点研发计划(2018YFD0800304)、国家重点研发计划(2016YFE0106400)和国家自然科学基金(41471253)资助
详细信息
    作者简介:

    邢维芹(1972−),女,河南安阳人,博士,副教授,研究方向为环境土壤学

    通讯作者:

    E-mail: xingwq@haut.edu.cn

    lilp@haut.edu.cn

  • 中图分类号: X53

Activation of Heavy Metals Cd and Pb in Contaminated Calcareous Soils

  • 摘要: 为了探讨石灰性污染土壤中重金属的活化方法,选择四种试剂(氯化钠、盐酸、EDDS和柠檬酸)和受镉污染和镉、铅复合污染两种土壤(XX土壤,全镉6.77 mg kg−1,< 0.01 mm颗粒含量9.8%;JY土壤全镉5.72 mg kg−1、全铅312 mg kg−1,< 0.01 mm颗粒含量29.8%)进行室内培养试验。结果表明:对于XX土壤,氯化钠、盐酸、EDDS和柠檬酸对镉均有活化作用,活化效率分别达到71.87%、74.87%、43.27%和22.86%;对于JY土壤,氯化钠、盐酸和EDDS对镉的活化效率分别达到53.44%、48.44%和42.4%,柠檬酸的活化作用不明显,氯化钠、盐酸、EDDS和柠檬酸对JY土壤铅的活化效率分别达到26.49%、25.56%、55.21%和14.81%。土壤质地可能是影响两种土壤中不同试剂重金属活化效率的主要因素。
  • 图  1  不同处理土壤pH值

    SC-氯化钠,HA-盐酸,EDDS-乙二胺二琥珀酸, CA-柠檬酸,图中不同字母表示同一土壤不同处理之间的数据在0.05水平上差异显著。下同。

    Figure  1.  pH values of soils added with different additives

    图  2  不同处理土壤EC值

    Figure  2.  EC of soils added with different additives

    图  3  不同处理XX土壤DTPA提取态重金属含量

    Figure  3.  Concentrations of DTPA-extractable heavy metals in different treatments of the XX soil

    图  4  不同处理对XX土壤重金属的活化效率

    Figure  4.  Activation efficiency of heavy metals in different treatments of the XX soil

    图  5  不同处理JY土壤DTPA提取态重金属含量

    Figure  5.  Concentrations of DTPA extractable heavy metals in different treatments of the JY soil

    图  6  不同处理对JY土壤重金属的活化效率

    Figure  6.  Activation efficiency of heavy metals in different treatments of the JY soil

    表  1  试验处理

    Table  1.   Treatments of the experiment

    试剂名称
    Reagent
    代码
    Code
    用量
    Application amount
    CK
    乙二胺二琥珀酸EDDS1.4612 g kg−1(5.0 mmol kg−1
    盐酸HA1.2397 mL kg−1(15.0 mmol kg−1
    氯化钠SC0.8766 g kg−1(15.0 mmol kg−1
    柠檬酸CA1.5760 g kg−1(7.5 mmol kg−1
    下载: 导出CSV

    表  2  两种土壤的基本性质

    Table  2.   Basic properties of the soils

    性质
    Soil property
    XX土壤
    XX Soil
    JY土壤
    JY Soil
    性质
    Soil property
    XX土壤
    XX Soil
    JY土壤
    JY Soil
    pH 8.15 8.13 全Pb(mg kg−1) 37.3 311.8
    EC(μS cm−1 245 792 DTPA-Pb(mg kg−1) 1.82 87.22
    碱解氮(mg kg−1 81.9 43.5 Pb有效性系数 4.88% 27.97%
    有效磷(mg kg−1 27.2 12.2 全Cd(mg kg−1 6.77 5.72
    速效钾(mg kg−1 83.3 96.7 DTPA-Cd(mg kg−1 2.12 0.85
    有机质(g kg−1
    碳酸钙含量(g kg−1
    16.2
    63.3
    10.4
    52.5
    Cd有效性系数
    全Cu(mg kg−1
    31.31%
    16.80
    14.86%
    60.26
    < 0.05 mm颗粒含量 13.3% 40.8% DTPA-Cu(mg kg−1 1.08 3.24
    < 0.01 mm颗粒含量 9.8% 29.8% Cu有效性系数 6.43% 5.38%
    Mg(NO3)2-Cd(mg kg−1 0.08 0.03 全Zn 79.58 129.59
    Mg(NO3)2-Pb(mg kg−1 未检出 未检出 DTPA-Zn 5.56 2.48
    Mg(NO3)2-Cu(mg kg−1 0.103 未检出 Zn有效性系数 6.99% 1.91%
    Mg(NO3)2-Zn(mg kg−1 未检出 未检出
    下载: 导出CSV

    表  3  不同处理硝酸镁态重金属含量

    Table  3.   Concentrations of magnesium nitrate-extractable heavy metal in different treatments

    土壤
    Soil
    代码
    Code
    含量 Concentration(mg kg−1
    CdPbCuZn
    XXCK0.082 c未检出0.122 b未检出
    SC0.121 b未检出0.115 b2.11
    HA0.153 a未检出0.126 b未检出
    CA0.044 d未检出0.112 b未检出
    EDDS0.108 b未检出1.231 a未检出
    JYCK0.054 c未检出未检出未检出
    SC0.081 b未检出未检出未检出
    HA0.067b c未检出未检出未检出
    CA0.055 c未检出未检出未检出
    EDDS0.361 a1.260.8555.59
    注:表中同一土壤的同一列中的不同字母表示不同处理之间的数据在0.05水平上差异显著。
    下载: 导出CSV
  • [1] Xing W, Zheng Y, Scheckel K G, et al. Spatial distribution of smelter emission heavy metals on farmland soil[J]. Environmental Monitoring and Assessment, 2019, 191(2): 115. doi: 10.1007/s10661-019-7254-1
    [2] Li L, Zhang Y, Ippolito J A, et al. Lead smelting effects heavy metal concentrations in soils, wheat, and potentially humans[J]. Environmental Pollution, 2020, 257: 113641. doi: 10.1016/j.envpol.2019.113641
    [3] 孙 鑫, 娄燕宏, 王 会, 等. 重金属污染土壤的植物强化修复研究进展[J]. 土壤通报, 2017, 48(4): 1008 − 1013.
    [4] Ke X, Zhang F, Zhou Y, et al. Removal of Cd, Pb, Zn, Cu in smelter soil by citric acid leaching[J]. Chemosphere, 2020, 255: 126690. doi: 10.1016/j.chemosphere.2020.126690
    [5] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. 2014, http://www.gov.cn/foot/2014-04/17/content-2661768.htm.
    [6] Luo J, Cai L, Qi S, et al. Improvement effects of cytokinin on EDTA assisted phytoremediation and the associated environmental risks[J]. Chemosphere, 2017, 185: 386 − 393. doi: 10.1016/j.chemosphere.2017.07.036
    [7] Evangelou M W, Ebel M, Schaeffer A. Chelate assisted phytoextraction of heavy metals from soil: Effect, mechanism, toxicity, and fate of chelating agents[J]. Chemosphere, 2007, 68(6): 989 − 1003. doi: 10.1016/j.chemosphere.2007.01.062
    [8] 邢维芹, 王亚利, 李立平, 等. 不同阴离子对水溶性磷酸盐稳定污染土壤中重金属的影响[J]. 环境科学学报, 2013, 33(10): 2814 − 2820.
    [9] 李立平, 邢维芹, 向国强, 等. 不同添加剂对铅冶炼污染土壤中铅、镉稳定效果的研究[J]. 环境科学学报, 2012, 32(7): 1717 − 1724.
    [10] Wang G, Zhang S, Zhong Q, et al. Feasibility of Chinese cabbage (Brassica bara) and lettuce (Lactuca sativa) cultivation in heavily metals- contaminated soil after washing with biodegradable chelators[J]. Journal of Cleaner Production, 2018, 197: 479 − 490. doi: 10.1016/j.jclepro.2018.06.225
    [11] 卢一富, 李真理, 阮心玲, 等. 铅冶炼污染石灰性土壤上冬小麦间作伴矿景天的探讨[J]. 农业环境科学学报, 2015, 34(9): 1686 − 1692. doi: 10.11654/jaes.2015.09.009
    [12] Guo X, Zhao G, Zhang G, et al. Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties[J]. Chemosphere, 2018, 209: 776 − 782. doi: 10.1016/j.chemosphere.2018.06.144
    [13] Zhang R, Cao X, Wnag H, et al. Simultaneous enhancement of heavy metal removal and electricity generation in soil microbial fuel cell[J]. Ecotoxicology and Environmental Safety, 2020, 192: 110314. doi: 10.1016/j.ecoenv.2020.110314
    [14] Guo X, Wei Z, Wu Q, et al. Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: Field experiments[J]. Chemosphere, 2016, 147: 412 − 419. doi: 10.1016/j.chemosphere.2015.12.087
    [15] Lu C A, Zhang J F, Jiang H M, et al. Assessment of soil contamination with Cd, Pb and Zn and source identification in the area around the Huludao Zinc Plant[J]. Journal of Hazardous Materials, 2010, 182(1-3): 743 − 748. doi: 10.1016/j.jhazmat.2010.06.097
    [16] 张静静, 朱爽阁, 朱利楠, 等. 不同钝化剂对微碱性土壤镉、镍形态及小麦吸收的影响[J]. 环境科学, 2020, 46(1): 460 − 468.
    [17] Fan Y, Li H, Xue Z, et al. Accumulation characteristics and potential risk of heavy metals in soil-vegetable system under greenhouse cultivation condition in Northern China[J]. Ecological Engineering, 2017, 102: 367 − 373. doi: 10.1016/j.ecoleng.2017.02.032
    [18] Liu Y, Cui J, Peng Y, et al. Atmospheric deposition of hazardous elements and its accumulation in both soil and grain of winter wheat in a lead-zinc smelter contaminated area, Central China[J]. Science of The Total Environment, 2020, 707: 135789. doi: 10.1016/j.scitotenv.2019.135789
    [19] 林大仪. 土壤学实验指导[M]. 北京: 中国林业出版社. 2004, 24-41
    [20] 鲁如坤. 土壤农业化学分析方法. [M]. 北京: 中国农业科技出版社, 2000.
    [21] 生态环境部, 国家市场监督管理总局. GB 15618-2018 土壤环境质量农用地土壤污染风险管控标准(试行)[S], 2018.
    [22] Uddin M K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 2017, 308: 438 − 462. doi: 10.1016/j.cej.2016.09.029
    [23] Meers E, Ruttens A, Hopgood M, et al. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals[J]. Chemosphere, 2005, 58(8): 1011 − 1022. doi: 10.1016/j.chemosphere.2004.09.047
    [24] Luo C, Shen Z, Lou L, et al. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds[J]. Environmental Pollution, 2006, 144(3): 862 − 871. doi: 10.1016/j.envpol.2006.02.012
    [25] Norvell W, Wu J, Hopkins D, et al. Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium[J]. Soil Science Society of America Journal, 2000, 64(6): 2162 − 2168. doi: 10.2136/sssaj2000.6462162x
    [26] Meers E, Tack M G, Verloo M G. Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: Implications for its use soil remediation[J]. Chemosphere, 2008, 70(3): 358 − 363. doi: 10.1016/j.chemosphere.2007.07.044
    [27] Tandy S, Ammann A, Schulin R, et al. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing[J]. Environmental Pollution, 2006, 142(2): 191 − 199. doi: 10.1016/j.envpol.2005.10.013
    [28] Yan D Y S, Yip T C M, Yui M M T, et al. Influence of EDDS-to-metal molar ratio, solution pH, and soil-to-solution ratio on metal extraction under EDDS deficiency[J]. Journal of Hazardous Materials, 2010, 178(1-3): 890 − 894. doi: 10.1016/j.jhazmat.2010.02.021
    [29] Luo C, Shen Z, Li X. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS[J]. Chemosphere, 2005, 59(1): 1 − 11. doi: 10.1016/j.chemosphere.2004.09.100
    [30] Gramss G, Voigt K D, Bergmann H. Plant availability and leaching of (heavy) metals from ammonium-, calcium-, carbohydrate-, and citric acid-treated uranium-mine-dump soil[J]. Journal of Plant Nutrition and Soil Science, 2004, 167(4): 417 − 427. doi: 10.1002/jpln.200421353
    [31] Evangelou M W H, Ebel M, Schaeffer A. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum[J]. Chemosphere, 2006, 63(6): 996 − 1004. doi: 10.1016/j.chemosphere.2005.08.042
    [32] Barekzai A, Mengel K. Effect of microbial decomposition of mature leaves on soil-pH[J]. Journal of Plant Nutrition and Soil Science, 2010, 156(1): 93 − 94.
    [33] Perez J, Jeffries T W. Roles of manganese and organic-acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium[J]. Applied & Environmental Microbiology, 1992, 58(8): 2402 − 2409.
    [34] 张根柱, 张社奇, 邵 丽, 等. 外源柠檬酸对黄土高原塿土土壤养分的影响[J]. 西北林学院学报, 2011, 26(2): 47 − 51.
    [35] 陆文龙, 张福锁, 曹一平, 等. 低分子量有机酸对石灰性土壤磷吸附动力学的影响[J]. 土壤学报, 1999, 36(2): 189 − 197. doi: 10.3321/j.issn:0564-3929.1999.02.006
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  39
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-05
  • 修回日期:  2021-01-12
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回