Comprehensive Evaluation of Ecological Quality and its Factors Analysis in the Shule River Basin Based on RSEI
-
摘要: 基于1987年、2007年和2017年Landsat遥感数据,通过绿度、湿度、干度和热度4个指标,应用主成分方法计算遥感生态指数(RSEI),再结合当地土地利用/覆被变化(LUCC)及社会经济统计资料,对1987 ~ 2017年疏勒河流域的生态环境质量进行综合评价及驱动力分析。结果表明:1987年至2017年,疏勒河流域RSEI总体呈下降趋势,分别由1987年的0.286、2007年的0.263降至2017年的0.215,下降了24.8%;生态环境质量等级较差面积比例也由1987年的83.39%、2007年62.36%下降至2017年31.96%,相对应等级差面积比例由11.57%、32.37%增加至61.54%,优等级面积比例由2.12%下降到0.48%至0.02%,显然,生态环境质量主要是差和较差,且整体在变差。气候变暖变干,林地和草地不断减少,耕地、建设用地显著增加,GDP快速增长和第一产业、第二产业和第三产业迅速发展是影响研究区生态环境质量变化的主要原因。Abstract: Based on the Landsat remote sensing data in 1987, 2007 and 2017, and combined with LUCC and 31-year social and economic statistics, the ecological environmental quality in the Shule River Basin in 1987 - 2017 was comprehensively evaluated and the driving forces were analyzed by using remote sensing based ecological index (RSEI) method and the principal component analysis method of green degree, humidity, dry degree and heat degree. The results showed that the RSEI in the Shule River Basin was decreased from 0.286 in 1987 and 0.263 in 2007 to 0.215 in 2017. The proportions of ecological environment quality at a very poor grade were decreased from 83.39% in 1987, 62.36% in 2007 to 31.96% in 2017, and the proportions at a poor grade were increased from 11.57% in 1987 and 32.37% in 2007 to 61.54% in 2017, and these at an excellent grade were decreased from 2.12% in 1987 to 0.48% in 2007 and to 0.02% in 2017. Obviously, the quality of ecological environment was mainly at poor and very poor grades, and was getting worse as a whole. Climate warming and drying, the decrease in the area of forest land and grassland, the significant increase in the area of cultivated land and construction land, and the rapid growth and development of GDP, primary, secondary and tertiary industries were the main natural and artificial reasons that affected the change of ecological environment quality in the study area.
-
Key words:
- Ecological environment quality /
- RSEI /
- Principal component analysis /
- LUCC /
- Evaluation /
- The Shule River Basin
-
表 1 RSEI主成分分析表
Table 1. RSEI principal component analysis
年份
YearPC1 PC2 PC3 PC4 特征值
Eigenvalue累计贡献率
Cumulative
contribution rate特征值
Eigenvalue累计贡献率
Cumulative
contribution rate特征值
Eigenvalue累计贡献率
Cumulative
contribution rate特征值
Eigenvalue累计贡献率
Cumulative
contribution rate1987 0.0217 86.62% 0.0014 92.18% 0.0012 97.11% 0.0007 100.00% 2007 0.0192 84.90% 0.0013 90.44% 0.0013 97.70% 0.0004 100.00% 2017 0.0186 81.14% 0.0018 91.50% 0.0015 97.81% 0.0004 100.00% 表 2 疏勒河流域生态环境质量指数RSEI
Table 2. Ecological environment quality index in the Shule River Basin
年份
Year参量
ParameterNDVI Wet NDSI LST RSEI 均值 0.466 0.448 0.662 0.185 0.286 1987 标准差 0.017 0.070 0.064 0.350 0.114 荷载值 0.394 0.383 −0.993 −0.063 均值 0.342 0.478 0.771 0.184 0.263 2007 标准差 0.016 0.056 0.038 0.349 0.043 荷载值 0.226 0.895 −0.217 −0.331 均值 0.321 0.590 0.661 0.194 0.215 2017 标准差 0.055 0.040 0.040 0.366 0.091 荷载值 0.151 0.270 −0.854 −0.273 表 3 疏勒河流域各生态等级面积和比例
Table 3. Area and proportion of each ecological class in the Shule River Basin
RSEI 1987年 In 1987 2007年 In 2007 2017年 In 2017 面积
Area (km2)百分比
Percentage (%)面积
Area (km2)百分比
Percentage (%)面积
Area (km2)百分比
Percentage (%)差 [0,0.2] 3386.42 11.57 9475.34 32.37 18013.58 61.54 较差(0.2,0.4] 24407.63 83.39 18251.72 62.36 9355.06 31.96 中 (0.4,0.6] 502.05 1.72 1002.16 3.42 1814.34 6.20 良 (0.6,0.8] 352.02 1.20 400.63 1.37 82.21 0.28 优 (0.8,1] 621.43 2.12 139.7 0.48 4.36 0.02 表 4 土地利用类型权重
Table 4. Weight of land use type
土地利用类型 Land use type 权重 Weight 耕地 0.1816 林地 0.1441 草地 0.1428 水域 0.1430 建设用地 0.1584 未利用地 0.2302 -
[1] Mukherjee M, Ray A K, Rajyalakshmi C. Physical quality of life index: Some international and Indian applications[J]. Social Indicators Research, 1979, 6(3): 283 − 292. doi: 10.1007/BF00300651 [2] Horiuchi K. Evaluation of the ecological situation in Tallinn and Helsinki region coastal waters based on benthic algae investigations[J]. Mem. School Sci. Engrg. Waseda Univ, 1969, 33: 75 − 77. [3] Stevenson A C, Skinner J, Hollis G E, et al. The El Kala national park and environs, Algeria: an ecological evaluation[J]. Environmental conservation, 1988, 15(4): 335 − 348. doi: 10.1017/S0376892900029830 [4] Halmy, Marwa W A. Assessing the impact of anthropogenic activities on the ecological quality of arid Mediterranean ecosystems (case study from the northwestern coast of Egypt)[J]. Ecological Indicators, 2019, 101: 992 − 1003. doi: 10.1016/j.ecolind.2019.02.005 [5] Çelekli A, Toudjani A A, Lekesiz H Ö, et al. Ecological quality assessment of running waters in the North Aegean catchment with diatom metrics and multivariate approach[J]. Limnologica, 2018, 73: 20 − 27. doi: 10.1016/j.limno.2018.09.001 [6] Sowinska S B. Application of surrogate measures of ecological quality assessment: The introduction of the Indicator of Ecological Landscape Quality (IELQ)[J]. Ecological Indicators, 2017, 73: 224 − 234. doi: 10.1016/j.ecolind.2016.09.019 [7] Tiner R W. Remotely-sensed indicators for monitoring the general condition of “natural habitat” in watersheds: an application for Delaware’s Nanticoke River watershed[J]. Ecological Indicators, 2004, 4(4): 227 − 243. doi: 10.1016/j.ecolind.2004.04.002 [8] Messer J J, Linthurst R A, Overton W S. An EPA program for monitoring ecological status and trends[J]. Environmental Monitoring and Assessment, 1991, 17(1): 67 − 78. doi: 10.1007/BF00402462 [9] 徐建春, 赵英时, 刘振华. 利用遥感和GIS研究内蒙古中西部地区环境变化[J]. 遥感学报, 2002, (02): 142 − 149+166. [10] Yu X, Ng C. An integrated evaluation of landscape change using remote sensing and landscape metrics: a case study of Panyu, Guangzhou[J]. International Journal of Remote Sensing, 2006, 27(6): 1075 − 1092. doi: 10.1080/01431160500377162 [11] Ya S S, Chong D, Chao Y, et al. Ecological Environmental Quality Evaluation of Yellow River Basin[J]. Procedia Engineering, 2012, 28: 754 − 758. doi: 10.1016/j.proeng.2012.01.803 [12] Damanik A M N, Boets P, Thi H T N, et al. Impact assessment of local land use on ecological water quality of the Guayas river basin (Ecuador)[J]. Ecological Informatics, 2018, 48: 226 − 237. doi: 10.1016/j.ecoinf.2018.08.009 [13] Erdelez A, Turk M F, Stambuk A, et al. Ecological quality status of the Adriatic coastal waters evaluated by the organotin pollution biomonitoring[J]. Marine Pollution Bulletin, 2017, 123: 313 − 323. doi: 10.1016/j.marpolbul.2017.08.039 [14] Kelly M G, Chiriac G, Soare M A, et al. Use of phytobenthos to evaluate ecological status in lowland Romanian lakes[J]. Limnologica, 2019, 77: 125682. doi: 10.1016/j.limno.2019.125682 [15] Karamfilov V, Berov D, Panayotidis P. Using Zostera noltei biometrics for evaluation of the ecological and environmental quality status of Black Sea coastal waters[J]. Regional Studies in Marine Science, 2019, 27: 100524. doi: 10.1016/j.rsma.2019.100524 [16] Wang C, Zhao H. The Assessment of Urban Ecological Environment in Watershed Scale[J]. Procedia Environmental Sciences, 2016, 36: 169 − 175. doi: 10.1016/j.proenv.2016.09.028 [17] Miao C L, Sun L Y, Yang L. The studies of ecological environmental quality assessment in Anhui Province based on ecological footprint[J]. Ecological Indicators, 2016, 60: 879 − 883. doi: 10.1016/j.ecolind.2015.08.040 [18] Gao S, Sun H, Zhao L, et al. Dynamic assessment of island ecological environment sustainability under urbanization based on rough set, synthetic index and catastrophe progression analysis theories[J]. Ocean and Coastal Management, 2019, 178: 104790. doi: 10.1016/j.ocecoaman.2019.04.017 [19] Kepner W G, Watts C J, Edmonds C M, et al. A landscape approach for detecting and evaluating change in a semi-arid environment[J]. Environmental Monitoring and Assessment, 2000, 64(1): 179 − 195. doi: 10.1023/A:1006427909616 [20] Lopez R D, Frohnr C. Remote sensing for landscape ecology: new metric indicators: monitoring, modeling, and assessment of ecosystems[M]. CRC Press, 2017. [21] 韩红霞, 高 峻, 刘广亮. 遥感和GIS支持下的城市植被生态效益评价[J]. 应用生态学报, 2003, 14(12): 2301 − 2304. doi: 10.3321/j.issn:1001-9332.2003.12.047 [22] Basso F, Bove E, Dumontet S, et al. Evaluating environmental sensitivity at the basin scale through the use of geographic information systems and remotely sensed data: an example covering the Agri basin (Southern Italy)[J]. Catena, 2000, 40(1): 19 − 35. doi: 10.1016/S0341-8162(99)00062-4 [23] Zhang J, Zhu Y, Fan F. Mapping and evaluation of landscape ecological status using geographic indices extracted from remote sensing imagery of the Pearl River Delta, China, between 1998 and 2008[J]. Environmental Earth Sciences, 2016, 75(4): 327. doi: 10.1007/s12665-015-5158-0 [24] 浦汉昕, 陈定茂, 杨明华, 等. 贵州省区域生态系统特征分析[J]. 生态学报, 1988, 8(4): 298 − 303. [25] 刘振波, 赵 军, 倪绍祥. 绿洲生态环境质量评价指标体系研究-以张掖市绿洲为例[J]. 干旱区地理, 2004, 27(4): 580 − 585. doi: 10.3321/j.issn:1000-6060.2004.04.024 [26] 柳 辉, 郎勇设, 崔北祥, 等. 宁夏生态环境遥感监测与质量评价[J]. 宁夏大学学报(自然科学版), 2008, 29(3): 267 − 271. [27] 王士远, 张学霞, 朱 彤, 等. 长白山自然保护区生态环境质量的遥感评价[J]. 地理科学进展, 2016, 35(10): 1269 − 1278. [28] 孟 岩, 赵庚星, 程晋南, 等. 基于MODIS遥感数据和GIS的山东省生态环境状况评价[J]. 中国生态农业学报, 2008, 16(4): 1020 − 1024. [29] 宋慧敏, 薛 亮. 基于遥感生态指数模型的渭南市生态环境质量动态监测与分析[J]. 应用生态学报, 2016, 27(12): 3913 − 3919. [30] 石三娥, 魏 伟, 杨 东, 等. 基于RSEDI 的石羊河流域绿洲区生态环境质量时空演变[J]. 生态学杂志, 2018, 37(4): 1152 − 1163. [31] 王丽春, 焦 黎, 来风兵, 等. 新疆精河县生态变化评价及驱动力研究[J]. 生态与农村环境学报, 2019, 35(3): 316 − 323. [32] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24): 7853 − 7862. [33] 潘竟虎, 董磊磊. 2001-2010年疏勒河流域生态系统质量综合评价[J]. 应用生态学报, 2016, 27(9): 2907 − 2915. [34] Bannari A, Morin D, Bonn F, et al. A review of vegetation indices[J]. Remote Sensing Reviews, 1995, 13(1): 95 − 120. [35] Crist E P. A TM tasseled cap equivalent transformation for reflectance factor data[J]. Remote Sensing of Environment, 1985, 17: 301 − 306. doi: 10.1016/0034-4257(85)90102-6 [36] Baig M H A, Zhang L, Shuai T, et al. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance[J]. Remote Sensing Letters, 2014, 5(5): 423 − 431. doi: 10.1080/2150704X.2014.915434 [37] Rikimaru A, Roy P S, Miyatake S. Tropical forest cover density mapping[J]. Tropical Ecology, 2002, 43(1): 39 − 47. [38] Xu H. A New Index for Delineating Built-Up Land Features in Satellite Imagery[J]. International Journal of Remote Sensing, 2008, 29(14): 4269 − 4276. doi: 10.1080/01431160802039957 [39] 朱贞榕, 程朋根, 桂 新, 等. 地表温度反演的算法综述[J]. 测绘与空间地理信息, 2016, 39(5): 70 − 75. doi: 10.3969/j.issn.1672-5867.2016.05.020 [40] 常跟应, 张文侠. 基于生态文明的疏勒河流域大规模移民反思[J]. 兰州大学学报(自然科学版), 2014, 50(3): 405 − 409. [41] 巩 杰, 钱彩云, 钱大文. 1977-2013年疏勒河中下游土地利用变化与环境响应[J]. 干旱区研究, 2017, 34(4): 775 − 781. [42] 柳 思, 张 军, 田 丰, 等. 2005-2014年疏勒河流域土地生态安全评价[J]. 生态科学, 2018, 37(3): 114 − 122. -