Physico-chemical Characteristics of Biochars Prepared by Pyrolysis of Tobacco-stalk under Different Temperatures
-
摘要: 分别对100 ~ 800 ℃下于马弗炉中低氧炭化制备的烟秆生物炭进行研究,分析其基础理化性质的变化。结果表明,烟草秸秆生物炭微量元素含量在热解温度为100 ~ 400 ℃时呈逐渐上升的趋势,在400 ~ 500 ℃时较为稳定;大量元素含量增加;C含量和N元素含量在100 ~ 300 ℃时逐渐增加,在400 ~ 800 ℃时先增加后下降,C/N在300 ~ 500 ℃时较为稳定。随着热解温度的升高,烟草秸秆生物炭表面水分子、甲基和亚甲基等官能团减少,C=C含量逐渐增多;烟草秸秆生物炭的BET比表面积、孔径、比孔容均在400 ~ 500 ℃时较大。烟草秸秆生物炭的中孔较多,孔隙内部特征多为墨水瓶状孔。热解温度为400 ~ 500 ℃时,烟杆生物炭大量和微量元素含量相对较高,C/N较为稳定,孔隙结构最为复杂。Abstract: The tobacco stalk was carbonized under different temperatures from 100 ℃ to 800 ℃, and then the basic physical and chemical properties of biochars were measured. The results showed that the mineral micro-element contents of tobacco-stalk biochar were increased with the increase of pyrolysis temperature at 100-400 ℃ and kept relatively stable at 400-500 ℃. Mineral macro-element contents were showed overall an increased trend with the pyrolysis temperature rise. The contents of carbon (C) and nitrogen (N) were increased gradually from 100 ℃ to 300 ℃ and then were declined from 400 ℃ to 800 ℃, and the C/N ratio was relatively stable at 300-500 ℃. With the increase of pyrolysis temperature, surface functional groups of tobacco-stalk biochar get condensed and its aromatization degree was heightened. With the pyrolysis temperature rise, the porosity of tobacco-stalk biochar was increased first and then decreased. The BET specific surface area, pore size and pore volume of tobacco-stalk biochar were the highest at 400-500 ℃. The mesopores were the main type of pores in tobacco-stalk biochar and mainly consisted of ink-bottle-like pores. The tobacco-stalk-biochar had higher macro- and micro elements, stable C/N, and complex pore structure at 400-500 ℃.
-
Key words:
- Tobacco-stalk /
- Biochar /
- Pyrolysis temperature /
- Physical property /
- Chemical property
-
表 1 烟秆生物炭大量和中量矿质元素随热解温度的变化
Table 1. Mineral macro-elements and middle-elements of tobacco-stalk biochar under different pyrolysis temperatures
热解温度(℃)
Temperature磷
Phosphorus
(mg g−1)钾
Potassium
(mg g−1)钙
Calcium
(mg g−1)镁
Magnesium
(mg g−1)100 1.123 d 10.44 c d 14.05 e 1.50 d 200 2.786 d 26.54 d 26.56 d e 3.11 d 300 4.941 c 54.11 c 42.45 d 5.09 c 400 9.346 b 113.25 b 97.18 b 9.87 b 500 10.707 b 116.68 b 97.18 b 12.27 b 600 10.178 b 140.23 a 104.84 b 10.57 b 700 7.715 b c 112.58 b 80.19 c 7.43 c 800 18.209 a 115.86 b 202.43 a 22.01 a 注:每组同列的不同字母表示0.05 显著水平。下同。 表 2 烟秆生物炭微量矿质元素随热解温度的变化
Table 2. Mineral micro-elements of tobacco-stalk biochar under different pyrolysis temperatures
热解温度(℃)
Temperature硼
Boron
(mg g−1)铁
Iron
(mg g−1)锰
Manganese
(mg g−1)锌
Zinc
(mg g−1)100 0.013 c d 0.125 d e 0.008 d 0.016 d 200 0.015 c d 0.361 d 0.026 c 0.030 c d 300 0.019 c 0.285 d 0.047 b 0.055 c 400 0.010 d 0.821 bc 0.090 a 0.091 b 500 0.011 d 1.152 b 0.090 a 0.090 b 600 0.067 a 0.946 b 0.095 a 0.094 b 700 0.040 b 0.811 b c 0.065 b 0.064 c 800 ℃ 0.020 c 1.862 a 0.236 c 0.140 b 注:每组同列的不同字母表示0.05显著水平。下同。 表 3 烟秆生物炭C、N元素含量随热解温度的变化
Table 3. Contents of carbon (C) and nitrogen (N) in tobacco-stalk biochar under different pyrolysis temperatures
热解温度(℃)
Temperature碳(%)
C氮(%)
NC/N 100 36.89 a b 2.40 b 15.36 a 200 41.00 a 3.56 a 11.50 b 300 41.01 a 3.80 a 10.80 b 400 23.97 b 2.22 b 10.77 b 500 15.22 c 1.43 c 10.64 b 600 7.55 d 0.84 d 9.01 b c 700 6.64 d 0.79 d 8.43 b c 800 3.49 e 0.71 d 4.95 d 表 4 烟秆生物炭的比表面积和孔结构参数
Table 4. Specific surface area and pore structure parameters of tobacco-stalk biochar under different pyrolysis temperatures
热解温度
Temperature
(℃)BET比表面积
BET specific
surface area
(m2 g−1)比孔容
Specific pore
volume
(cm3 g−1)平均孔径
Average
poresize
(nm)t-Plot微孔比表面积
t-Plot micropore specific
surface area
(m2 g−1)中孔比表面积
Mesopore specific
surface area
(m2 g−1)中孔孔容
Mesopore
pore volume
(cm3 g−1)100 0.824 0.001 1.847 0.146 0.370 0.002 200 1.619 0.003 1.847 0.286 0.928 0.005 300 2.880 0.005 1.766 0.800 1.522 0.008 400 6.072 0.009 2.769 0.955 3.294 0.011 500 6.849 0.011 4.543 0.579 4.477 0.015 600 5.269 0.008 3.794 − 3.491 0.014 700 4.659 0.008 3.694 − 3.294 0.011 800 1.199 0.003 5.439 − 1.046 0.004 注:“−”未检测到数值。 表 5 烟秆生物炭孔隙参数的相关性分析
Table 5. Correlation analysis of tobacco-stalk biochar pore parameters
温度
Temperature比表面积
Specific surface area孔径
Pore size比孔容
Specific pore volume温度 1 0.321 0.900** 0.416 比表面积 0.321 1 0.308 0.989** 孔径 0.900** 0.308 1 0.393 比孔容 0.416 0.989** 0.393 1 注:“−”未检测到数值。 -
[1] 高利伟, 马 林, 张卫峰, 等. 中国作物秸秆养分资源数量估算及其利用状况[J]. 农业工程学报, 2009, 25(7): 173 − 179. doi: 10.3969/j.issn.1002-6819.2009.07.032 [2] 程宝玉, 吴娟霞, 陈卫华, 等. 豫西烟草脉斑病发生规律及药剂防治研究[J]. 烟草科技, 2002, (7): 46 − 48. doi: 10.3969/j.issn.1002-0861.2002.07.015 [3] 尚志强, 张晓海, 邵 岩, 等. 秸秆还田和覆盖对烤烟生长发育及品质的影响[J]. 烟草科技, 200, 6(1): 50-53. [4] Agrupis S, Maekawa E, Suzuki K. Industrial utilization of tobacco stalks, 2: Preparation and characterization of tobacco pulp by steam explosion pulping[J]. Journal of Wood Science, 2000, 46(3): 222 − 229. doi: 10.1007/BF00776453 [5] Carlos M, Teresa F, Ramón G, et al. Preparation of hydrolysates from tobacco stalks and ethanolic fermentation by Saccharomyces cerevisiae[J]. World Journal of Microbiology and Biotechnology, 2002, 18(9): 857 − 862. doi: 10.1023/A:1021258708507 [6] Demirbaş A. Analysis of Liquid Products from Biomass via Flash Pyrolysis[J]. Energy Sources, 2002, 24(24): 337 − 345. [7] 杨 华. 从烟草废弃物中提取天然烟碱技术的研究[J]. 环境导报, 1994, (5): 14 − 15. [8] 朱大恒.利用烟草秸秆生产生物有机肥的方法: 中国, 98106838.3[P]. 1999. 10-13. [9] 高 明, 郭灵燕, 席 宇, 等. 烟梗生物发酵制造有机肥[J]. 烟草科技, 2010, (12): 57 − 60. doi: 10.3969/j.issn.1002-0861.2010.12.015 [10] Sohi S P, Krull E, Lopez-Capel E, et al. Chapter 2 – A Review of Biochar and Its Use and Function in Soil[J]. Advances in Agronomy, 2010, 105(1): 47 − 82. [11] Zhang L, Xu C, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion & Management, 2010, 51(5): 969 − 982. [12] 袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011, 20(4): 779 − 785. doi: 10.3969/j.issn.1674-5906.2011.04.034 [13] Goldberg E D. Black carbon in the environment: properties and distribution[J]. Environmental Science & Technology, 1985, 37(2): 1689 − 1691. [14] Schmidt M W I, Noack A G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges[J]. Global Biogeochemical Cycles, 2000, 14(3): 777 − 793. doi: 10.1029/1999GB001208 [15] Braida W J, Pignatello J J, Lu Y, et al. Sorption hysteresis of benzene in charcoal particles[J]. Environmental Science & Technology, 2003, 37(2): 409 − 417. [16] Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biology & Biochemistry, 2009, 41(6): 1301 − 1310. [17] Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soil[J]. Soil Science Society of America Journal, 2006, 70(5): 1719 − 1730. doi: 10.2136/sssaj2005.0383 [18] Cheng C H, Lehmann J, Engelhard M H. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence[J]. Geochimica et Cosmochimica Acta, 2008, 72(6): 1598 − 1610. doi: 10.1016/j.gca.2008.01.010 [19] Titirici M M, Thomas A, Yu S H, et al. A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization[J]. Chemistry of Materials, 2007, 19(17): 4205 − 4212. doi: 10.1021/cm0707408 [20] Cornelissen G, Kukulska Z, Kalaitzidis S, et al. Relations between environmental black carbon sorption and geochemical sorbent characteristics[J]. Environmental Science & Technology, 2004, 38(13): 3632 − 40. [21] 刘玉学, 王耀锋, 吕豪豪, 等. 不同稻秆炭和竹炭施用水平对小青菜产量、品质以及土壤理化性质的影响[J]. 植物营养与肥料学报, 2013, 19(6): 1438 − 1444. doi: 10.11674/zwyf.2013.0618 [22] 陈心想, 何绪生, 耿增超, 等. 生物炭对不同土壤化学性质、小麦和糜子产量的影响[J]. 生态学报, 2013, 33(20): 6534 − 6542. [23] 叶协锋, 刘红恩, 孟 琦, 等. 不同类型烟秸秆化学组分分析[J]. 烟草科技, 2013, (10): 76 − 79. doi: 10.3969/j.issn.1002-0861.2013.10.018 [24] 叶协锋, 于晓娜, 孟 琦, 等. 烤烟秸秆炭化后理化特性分析[J]. 烟草科技, 2015, (5): 14 − 18. [25] 周涵君, 于晓娜, 孟 琦, 等. 热解温度对油菜秸秆炭理化特性及孔隙结构的影响[J]. 河南农业大学学报, 2018, 52(6): 983 − 990. [26] Chen B L, Zhou D D, Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14): 5137 − 5143. [27] 安增莉, 侯艳伟, 蔡 超, 等. 水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J]. 环境化学, 2011, 30(11): 1851 − 1857. [28] 陈再明, 陈宝梁, 周丹丹. 水稻秸秆生物碳的结构特征及其对有机污染物的吸附性能[J]. 环境科学学报, 2013, (1): 9 − 19. [29] 刘 辉, 吴少华, 孙 锐, 等. 快速热解褐煤焦的比表面积及孔隙结构[J]. 中国电机工程学报, 2005, 25(12): 86 − 90. doi: 10.3321/j.issn:0258-8013.2005.12.016 [30] 近藤精一. 吸附科学[M]. 化学工业出版社, 2006. [31] 郭 平, 王观竹, 许 梦. 不同热解温度下生物质废弃物制备的生物质炭组成及结构特征[J]. 吉林大学学报:理学版, 2014, (4): 855 − 860. [32] 安增莉. 生物炭的制备及其对Pb(Ⅱ)的吸附特性研究[D]. 华侨大学, 2011. [33] Braadbaart F, Poole I. Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts[J]. Journal of Archaeological Science, 2008, 35(9): 2434 − 2445. doi: 10.1016/j.jas.2008.03.016 [34] 袁金华, 徐仁扣. 稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果[J]. 生态与农村环境学报, 2010, 26(5): 472 − 476. doi: 10.3969/j.issn.1673-4831.2010.05.013 [35] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488 − 3497. doi: 10.1016/j.biortech.2010.11.018 [36] Sevgi Ş, Mukaddes C. Pyrolysis of pine (Pinus Brutia Ten.) chips: 1. Effect of pyrolysis temperature and heating rate on the product yields[J]. Energy Sources, 2002, 24(4): 347 − 355. doi: 10.1080/00908310252888727 [37] 罗 煜, 赵立欣, 孟海波. 不同温度下热裂解芒草生物质炭的理化特征分析[J]. 农业工程学报, 2013, (13): 208 − 217. doi: 10.3969/j.issn.1002-6819.2013.13.027 [38] 于晓娜. 烟秆生物炭的理化性质及其在烤烟上的应用[D]. 河南农业大学, 2017. [39] 林晓芬, 张 军, 尹艳山, 等. 生物质炭孔隙分形特征研究[J]. 生物质化学工程, 2009, 43(3): 9 − 12. doi: 10.3969/j.issn.1673-5854.2009.03.003 -