留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

提升集约化香蕉园土壤健康水平的根层调控策略与途径

张江周 李宝深

张江周, 李宝深. 提升集约化香蕉园土壤健康水平的根层调控策略与途径[J]. 土壤通报, 2021, 52(2): 398 − 407 doi: 10.19336/j.cnki.trtb.2020052001
引用本文: 张江周, 李宝深. 提升集约化香蕉园土壤健康水平的根层调控策略与途径[J]. 土壤通报, 2021, 52(2): 398 − 407 doi: 10.19336/j.cnki.trtb.2020052001
ZHANG Jiang-zhou, LI Bao-shen. Root-zone Management Strategies to Improve Soil Health in an Intensive Banana Orchard[J]. Chinese Journal of Soil Science, 2021, 52(2): 398 − 407 doi: 10.19336/j.cnki.trtb.2020052001
Citation: ZHANG Jiang-zhou, LI Bao-shen. Root-zone Management Strategies to Improve Soil Health in an Intensive Banana Orchard[J]. Chinese Journal of Soil Science, 2021, 52(2): 398 − 407 doi: 10.19336/j.cnki.trtb.2020052001

提升集约化香蕉园土壤健康水平的根层调控策略与途径

doi: 10.19336/j.cnki.trtb.2020052001
基金项目: 国家自然科学基金项目(32002133)及国家重点研发计划项目(2016YFE0101100,2017YFD0202102)资助
详细信息
    作者简介:

    张江周(1987−),男,博士,研究方向:土壤健康与养分资源管理,E-mail: zjzky2010@163.com

    通讯作者:

    E-mail: libaoshen1986@126.com

  • 中图分类号: S147.2

Root-zone Management Strategies to Improve Soil Health in an Intensive Banana Orchard

  • 摘要: 香蕉是热带亚热带地区一种重要的经济作物,在国际水果贸易中占有重要地位。与世界高产国家相比,我国香蕉生产单产存在较大的产量差,因此,如何消减土壤障碍因子,培育健康土壤,成为香蕉集约化生产中面临的重大挑战。本文提出了蕉园集约化生产根层土壤健康调控的策略:(1)明确香蕉生产中土壤障碍因子,(2)通过根层调控消减土壤障碍因子,(3)提高蕉园土壤生物活性和生态系统服务功能。集约化生产蕉园土壤物理、化学和生物学障碍因子,主要有土壤耕性差、pH低和有机质含量不高、养分有效性低、微生物多样性下降及枯萎病菌等土传病害和香蕉根结线虫为害加剧等。应采用相应的调控策略有增施石灰提高根层土壤pH、改善养分有效性;施用有机改良剂和其他调控措施相结合,在调酸的基础上改善土壤物理性质,提高有机质含量和养分的有效性;施用生物有机肥增加根际土壤有益微生物数量,减轻土传病害。总之,对根层进行综合调控可以提升集约化生产蕉园土壤健康水平和生态系统服务功能,实现香蕉产业提质增效和绿色可持续发展。
  • 图  1  1961-2018年我国香蕉收获面积和总产量(数据来源于FAO)

    Figure  1.  Banana harvested area and production in China from 1961 to 2018(Data from FAO)

    图  2  根层土壤调控措施提升蕉园土壤健康模式图

    Figure  2.  A conceptual model of root-zone management to improve soil health of banana orchard

    表  1  2018年我国香蕉主产区生产现状

    Table  1.   Banana production status in main producing areas of China in 2018

    省份
    Province
    种植面积(ten thousand hm2
    Planting area
    总产量(ten thousand t)
    Banana production
    平均单产(t hm−2
    Average yield
    海南 3.5 121.6 35.0
    广东 10.9 422.8 38.9
    广西 8.3 323.2 39.1
    云南 8.6 203.5 23.7
    福建 1.1 42.1 37.2
      注:数据来源于国家统计局。
    下载: 导出CSV
  • [1] Godfray H C J, Beddington J R, Crute I R, et al. Food security: the challenge of feeding 9 billion people[J]. Science, 2010, 327: 812 − 818. doi: 10.1126/science.1185383
    [2] Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture[J]. Proc. Natl. Acad. Sci. USA., 2011, 108: 20260 − 20264. doi: 10.1073/pnas.1116437108
    [3] Carvalho G B M, Silva D P, Santos J C, et al. Total soluble solids from banana: evaluation and optimization of extraction parameters[J]. Appl. Biochem. Biotech., 2009, 153: 34 − 43. doi: 10.1007/s12010-008-8462-2
    [4] Pillay M, Tenkouano A. Banana breeding: Progress and challenges[M]. Boca Raton, FL: CRC Press, 2011.
    [5] 方 昭. 广西滴灌条件下不同代别香蕉氮磷钾养分吸收与分配特性[D]. 北京: 中国农业大学, 2016.
    [6] Robinson J C, Galán saúco V. Bananas and plantains (2nd edition)[M]. Oxfordshire, UK: CABI Publishing, 2010.
    [7] Belalcázar C S, Rosales F E, Pocasangre L E. Development and formation of plantain roots (Musa AAB Simmonds). In: TURNER D W, ROSALES F E. Banana root system: Towards a better understanding for its productive management[M]. Montpellier, France: International Network for the Improvement of Banana and Plantain (INIBAP), 2005.
    [8] 金志强. 香蕉果实生长发育的生理学与分子生物学[M]. 北京: 中国农业大学出版社, 2006.
    [9] 周修冲, 梁孝衍, 徐培智, 等. 香蕉的氮磷钾营养特性及其平衡施肥研究[J]. 广东农业科学, 1993, (6): 25 − 28.
    [10] 张海风. 海南省反季节香蕉营养特性和营养诊断指标的研究[D]. 儋州: 华南热带农业大学, 2001.
    [11] 姚丽贤, 周修冲, 彭志平, 等. 巴西蕉的营养特性及钾镁肥配施技术研究[J]. 植物营养与肥料学报, 2005, 11(1): 116 − 121. doi: 10.3321/j.issn:1008-505X.2005.01.019
    [12] 樊小林, 等. 香蕉营养与施肥[M]. 北京: 中国农业出版社, 2007.
    [13] 余 赟. 金穗蕉园土壤肥力特性及评价[D]. 北京: 中国农业大学, 2015.
    [14] 陈杰忠. 果树栽培学各论: 南方本(第三版)[M]. 北京: 中国农业出版社, 2003.
    [15] 闻 禄. 普洱市香蕉施肥现状调查与分析[J]. 热带农业科学, 2013, 33(11): 5 − 8. doi: 10.3969/j.issn.1009-2196.2013.11.002
    [16] 郭玉婷, 伏广农, 张新明, 等. 高州市香蕉施肥状况调查与分析[J]. 安徽农学通报, 2013, 19(20): 46 − 48. doi: 10.3969/j.issn.1007-7731.2013.20.022
    [17] 余 赟, 马翠凤, 韦思智, 等. 桂南地区隆安县典型蕉园施肥现状与建议[J]. 农业研究与应用, 2015, (3): 50 − 54. doi: 10.3969/j.issn.2095-0764.2015.03.011
    [18] 杜晓远. 广东徐闻县香蕉生产关键因素分析[D]. 北京: 中国农业大学, 2015.
    [19] Twyford I T, Walmsley D. Mineral composition of the Robusta banana plant III. uptake and distribution of mineral constituents[J]. Plant Soil, 1974, 41: 471 − 491. doi: 10.1007/BF02185810
    [20] 李宝深. 滴灌蕉园养分综合管理技术研究与应用-以广西金穗为例[D]. 北京: 中国农业大学, 2015.
    [21] Zeng M, De Vries W, Bonten L T C, et al. Model-based analysis of the long-term effects of fertilization management on cropland soil acidification[J]. Environ. Sci. Technol., 2017, 51: 3843 − 3851. doi: 10.1021/acs.est.6b05491
    [22] Hinsinger P, Plassard C, Tang C, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review[J]. Plant Soil, 2003, 248: 43 − 59. doi: 10.1023/A:1022371130939
    [23] Shi R, Liu Z, Li Y, et al. Mechanisms for increasing soil resistance to acidification by long-term manure application[J]. Soil Till. Res., 2019, 185: 77 − 84. doi: 10.1016/j.still.2018.09.004
    [24] Van Breemen N, Driscoll C T, Mulder J. Acidic deposition and internal proton sources in acidification of soils and waters[J]. Nature, 1984, 307: 599 − 604. doi: 10.1038/307599a0
    [25] Von Uexküll H R, Mutert E. Global extent, development and economic impact of acid soils[J]. Plant Soil, 1995, 171: 1 − 15. doi: 10.1007/BF00009558
    [26] 徐仁扣, 等. 酸化红壤的修复原理与技术[M]. 北京: 科学出版社, 2013.
    [27] 林 电, 郑丽燕, 廖志气, 等. 海南香蕉园土壤肥力研究[J]. 中国土壤与肥料, 2007, (2): 26 − 29, 81. doi: 10.3969/j.issn.1673-6257.2007.02.006
    [28] 魏守兴, 谢子四, 李志阳, 等. 广西主要蕉园土壤肥力调查及评价[J]. 热带作物学报, 2012, 33(8): 1371 − 1377. doi: 10.3969/j.issn.1000-2561.2012.08.007
    [29] 庄绍东. 漳州香蕉园土壤肥力状况分析[J]. 福建农业学报, 2003, 18(3): 168 − 172. doi: 10.3969/j.issn.1008-0384.2003.03.010
    [30] 陈鸿洁, 杨绍琼, 赵东兴, 等. 河口县香蕉园土壤肥力状况分析[J]. 热带农业科学, 2014, 34(2): 33 − 38, 43. doi: 10.3969/j.issn.1009-2196.2014.02.007
    [31] Ramos F T, Dores E F D C, Weber O L D S, et al. Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil[J]. J. Sci. Food Agric., 2018, 98: 3595 − 3602. doi: 10.1002/jsfa.8881
    [32] Zhao J, Chen S, Hu R, et al. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides[J]. Soil Till. Res., 2017, 167: 73 − 79. doi: 10.1016/j.still.2016.11.007
    [33] Tian J, He N, Hale L, et al. Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests[J]. Funct. Ecol., 2018, 32: 61 − 70. doi: 10.1111/1365-2435.12952
    [34] Obalum S E, Chibuike G U, Peth S, et al. Soil organic matter as sole indicator of soil degradation[J]. Environ. Monit. Assess., 2017, 189: 176. doi: 10.1007/s10661-017-5881-y
    [35] Tiessen H, Cuevas E, Chacon P. The role of soil organic matter in sustaining soil fertility[J]. Nature, 1994, 371: 783 − 785. doi: 10.1038/371783a0
    [36] Rousseau L, Fonte S J, Téllez O, et al. Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua[J]. Ecol. Indic., 2013, 27: 71 − 82. doi: 10.1016/j.ecolind.2012.11.020
    [37] Fierer N. Embracing the unknown, disentangling the complexities of the soil microbiome[J]. Nat. Rev. Microbiol., 2017, 15: 579 − 590. doi: 10.1038/nrmicro.2017.87
    [38] Butler D. Fungus threatens top banana[J]. Nature, 2013, 504: 195 − 196. doi: 10.1038/504195a
    [39] Ploetz R C. Fusarium wilt of banana[J]. Phytopathology, 2015, 105: 1512 − 1521. doi: 10.1094/PHYTO-04-15-0101-RVW
    [40] 薛 超. 香蕉根际土壤微生物区系特征与土传枯萎病防控研究[D]. 南京: 南京农业大学, 2015.
    [41] Shen Z, Penton C R, Lv N, et al. Banana fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans[J]. Microb. Ecol., 2018, 75: 739 − 750. doi: 10.1007/s00248-017-1052-5
    [42] Zhong S, Zeng H C, Jin Z Q. Response of soil nematode community composition and diversity to different crop rotations and tillage in the tropics[J]. Appl. Soil Ecol., 2016, 107: 134 − 143. doi: 10.1016/j.apsoil.2016.05.013
    [43] Salguero D, Rudon G, Blanco R, et al. Effect of different nematicide applications per year on banana (Musa AAA) root nematode control and crop yield[J]. J. Appl. Biosci., 2016, 101: 9598 − 9609.
    [44] Frᶏc M, Hannula S E, Bełka M, et al. Fungal biodiversity and their role in soil health[J]. Front. Microbiol., 2018, 9: 707. doi: 10.3389/fmicb.2018.00707
    [45] Doran J W, Sarrantonio M, Liebig M A. Soil health and sustainability[J]. Adv. Agron., 1996, 56: 2 − 54.
    [46] Stirling G, Hayden H, Pattison T, et al. Soil health, soil biology, soilborne diseases and sustainable agriculture: a guide[M]. Melbourne: CSIRO Publishing, 2016.
    [47] Pattison T, Smith L, Moody P, et al. Banana root and soil health project-Australia. In: TURNER D W, ROSALES F E. Banana root system: Towards a better understanding for its productive management[M]. Montpellier, France: International Network for the Improvement of Banana and Plantain (INIBAP), 2005.
    [48] Sánchez-moreno S, Cano M, López-pérez A, et al. Microfaunal soil food webs in Mediterranean semi-arid agroecosystems. Does organic management improve soil health?[J]. Appl. Soil Ecol., 2018, 125: 138 − 147. doi: 10.1016/j.apsoil.2017.12.020
    [49] 张福锁, 申建波, 冯 固, 等. 根际生态学-过程与调控[M]. 北京: 中国农业大学出版社, 2009.
    [50] Zhang F, Shen J, Zhang J, et al. Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China[J]. Adv. Agron., 2010, 107: 1 − 32.
    [51] Ahkami A H, White R A, Handakumbura P P, et al. Rhizosphere engineering: enhancing sustainable plant ecosystem productivity[J]. Rhizosphere, 2017, 3: 233 − 243. doi: 10.1016/j.rhisph.2017.04.012
    [52] Serrano E. Relationship between functional root content and banana yield in Costa Rica. In: TURNER D W, ROSALES F E. Banana root system: Towards a better understanding for its productive management[M]. Montpellier, France: International Network for the Improvement of Banana and Plantain (INIBAP), 2005.
    [53] Rengel Z, Marschner P. Nutrient availability and management in the rhizosphere: exploiting genotypic differences[J]. New Phytol., 2005, 168: 305 − 312. doi: 10.1111/j.1469-8137.2005.01558.x
    [54] Nguyen P A, Strub C, Durand N, et al. Biocontrol of Fusarium verticillioides using organic amendments and their actinomycete isolates[J]. Biol. Control, 2018, 118: 55 − 66. doi: 10.1016/j.biocontrol.2017.12.006
    [55] Roth C H, Pavan M A. Effects of lime and gypsum on clay dispersion and infiltration in samples of a Brazilian Oxisol[J]. Geoderma, 1991, 48: 351 − 361. doi: 10.1016/0016-7061(91)90053-V
    [56] Haynes R J, Naidu R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review[J]. Nutr. Cycl. Agroecosys., 1998, 51: 123 − 137. doi: 10.1023/A:1009738307837
    [57] Caires E F, Garbuio F J, Churka S, et al. Effects of soil acidity amelioration by surface liming on no-till corn, soybean, and wheat root growth and yield[J]. Eur. J. Agron., 2008, 28: 57 − 64. doi: 10.1016/j.eja.2007.05.002
    [58] Caires E F, Haliski A, Bini A R, et al. Surface liming and nitrogen fertilization for crop grain production under no-till management in Brazil[J]. Eur. J. Agron., 2015, 66: 41 − 53. doi: 10.1016/j.eja.2015.02.008
    [59] Raboin L M, Razafimahafaly A H D, Rabenjarisoa M B, et al. Improving the fertility of tropical acid soils, liming versus biochar application? A long term comparison in the highlands of Madagascar[J]. Field Crop. Res., 2016, 199: 99 − 108. doi: 10.1016/j.fcr.2016.09.005
    [60] 曾廷廷, 蔡泽江, 王小利, 等. 酸性土壤施用石灰提高作物产量的整合分析[J]. 中国农业科学, 2017, 50(13): 2519 − 2527. doi: 10.3864/j.issn.0578-1752.2017.13.011
    [61] Njoku B O, Enwezor W O. Differential response of 4 cassava cultivars (Manihot Esculenta) to liming of 2 acid soils in pot and field experiments[J]. Field Crop. Res., 1991, 28: 163 − 172. doi: 10.1016/0378-4290(91)90081-6
    [62] 迟志广. 广西金穗蕉园土壤酸性对香蕉生长影响及改良措施研究[D]. 北京: 中国农业大学, 2016.
    [63] Li J, Wang N, Xu R, et al. Potential of industrial byproducts in ameliorating acidity and aluminum toxicity of soils under tea plantation[J]. Pedosphere, 2010, 20: 645 − 654. doi: 10.1016/S1002-0160(10)60054-9
    [64] Aparna K, Pasha M A, Rao D L N, et al. Organic amendments as ecosystem engineers: Microbial, biochemical and genomic evidence of soil health improvement in a tropical arid zone field site[J]. Ecol. Eng., 2014, 71: 268 − 277. doi: 10.1016/j.ecoleng.2014.07.016
    [65] Sarma B, Borkotoki B, Narzari R, et al. Organic amendments: effect on carbon mineralization and crop productivity in acidic soil[J]. J. Clean. Prod., 2017, 152: 157 − 166. doi: 10.1016/j.jclepro.2017.03.124
    [66] Bonanomi G, Lorito M, Vinale F, et al. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression[J]. Annu. Rev. Phytopathol., 2018, 56: 1.1 − 1.20.
    [67] 胡霭堂, 等. 植物营养学(下册)[M]. 北京, 中国农业大学出版社, 2003.
    [68] Wang N, Li J, Xu R. Use of agricultural by-products to study the pH effects in an acid tea garden soil[J]. Soil Use Manage., 2009, 25: 128 − 132. doi: 10.1111/j.1475-2743.2009.00203.x
    [69] Mao J, Xu R, Li J, et al. Dicyandiamide enhances liming potential of two legume materials when incubated with an acid Ultisol[J]. Soil Biol. Biochem., 2010, 42: 1632 − 1635. doi: 10.1016/j.soilbio.2010.05.006
    [70] Butterly C R, Baldock J A, Tang C. The contribution of crop residues to changes in soil pH under field conditions[J]. Plant Soil, 2013, 366: 185 − 198. doi: 10.1007/s11104-012-1422-1
    [71] Xu H, Wang X, Li H, et al. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape[J]. Environ. Sci. Technol., 2014, 48: 9391 − 9399. doi: 10.1021/es5021058
    [72] Whalen J K, Chang C, Clayton G W, et al. Cattle manure amendments can increase the pH of acid soils[J]. Soil Sci. Soc. Am. J., 2000, 64: 962 − 966. doi: 10.2136/sssaj2000.643962x
    [73] Shen Q, Shen Z. Effects of pig manure and wheat straw on growth of mung bean seedlings grown in aluminium toxicity soil[J]. Bioresour. Technol., 2001, 76: 235 − 240. doi: 10.1016/S0960-8524(00)00109-7
    [74] Xun W, Xiong W, Huang T, et al. Swine manure and quicklime have different impacts on chemical properties and composition of bacterial communities of an acidic soil[J]. Appl. Soil Ecol., 2016, 100: 38 − 44. doi: 10.1016/j.apsoil.2015.12.003
    [75] Sun R, Dsouza M, Gilbert J A, et al. Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter[J]. Environ. Microbiol., 2016, 18: 5137 − 5150. doi: 10.1111/1462-2920.13512
    [76] Shen Z, Ruan Y, Xue C, et al. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana fusarium wilt disease suppression[J]. Biol. Fert. Soils, 2015, 51: 553 − 562. doi: 10.1007/s00374-015-1002-7
    [77] Shen Z, Ruan Y, Wang B, et al. Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial[J]. Appl. Soil Ecol., 2015, 93: 111 − 119. doi: 10.1016/j.apsoil.2015.04.013
    [78] Zhou J, Xia F, Liu X, et al. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China[J]. J. Soils Sediments, 2014, 14: 415 − 422. doi: 10.1007/s11368-013-0695-1
    [79] 王 岚, 黄承和, 陈玉子, 等. 铵硝配比对巴西香蕉生长和氮素营养的影响[J]. 热带作物学报, 2016, 37(1): 26 − 29. doi: 10.3969/j.issn.1000-2561.2016.01.005
    [80] 张超一, 樊小林. 铵态氮及硝态氮配比对香蕉幼苗氮素吸收动力学特征的影响[J]. 中国农业科学, 2015, 48(14): 2777 − 2784. doi: 10.3864/j.issn.0578-1752.2015.14.009
    [81] Zhang J, Wang C, Fang Z, et al. Nutrient and dry matter accumulation in different generations of banana at different growth stages[J]. Fruits, 2019, 74: 82 − 92. doi: 10.17660/th2019/74.2.4
    [82] 涂攀峰, 邓兰生, 龚 林, 等. 香蕉水肥一体化技术-按叶片数滴灌施肥[J]. 广东农业科学, 2011, 38(2): 59 − 61. doi: 10.3969/j.issn.1004-874X.2011.02.024
    [83] 陈超君, 黄有总, 徐建云. 石灰、钙镁磷肥对酸性蔗作土的效应研究[J]. 广西蔗糖, 2001, (4): 9 − 13.
    [84] Moon D H, Chang Y Y, Ok Y S, et al. Amelioration of acidic soil using various renewable waste resources[J]. Environ. Sci. Pollut. Res., 2014, 21: 774 − 780. doi: 10.1007/s11356-013-2138-3
    [85] Zhao X, Chen R, Shen R. Coadaptation of plants to multiple stresses in acidic soils[J]. Soil Sci., 2014, 179: 503 − 513. doi: 10.1097/SS.0000000000000086
    [86] Lavigne C, Achard R, Tixier P, et al. How to integrate cover crops to enhance sustainability in banana and citrus cropping systems[J]. Acta Hortic., 2012, 928: 351 − 357.
    [87] Djigal D, Chabrier C, Duyck P F, et al. Cover crops alter the soil nematode food web in banana agroecosystems[J]. Soil Biol. Biochem., 2012, 48: 142 − 150. doi: 10.1016/j.soilbio.2012.01.026
    [88] Mollot G, Duyck P F, Lefeuvre P, et al. Cover cropping alters the diet of arthropods in a banana plantation: A metabarcoding approach[J]. PLoS ONE, 2014, 9(4): e93740. doi: 10.1371/journal.pone.0093740
    [89] Pattison A B, Wright C L, Kukulies T L, et al. Ground cover management alters development of Fusarium wilt symptoms in Ducasse bananas[J]. Australas. Plant Path., 2014, 43(4): 465 − 476. doi: 10.1007/s13313-014-0296-5
    [90] Rames E K, Pattison A B, Czislowski E, et al. Soil microbial community changes associated with ground cover management in cultivation of Ducasse banana (Musa sp. ABB, Pisang Awak subgroup) and suppression of Fusarium oxysporum[J]. Australas. Plant Path., 2018, 47(4): 449 − 462. doi: 10.1007/s13313-018-0578-4
    [91] Bubici G, Kaushal M, Prigigallo M I, et al. Biological control agents against Fusarium wilt of banana[J]. Front. Microbiol., 2019, 10: 616. doi: 10.3389/fmicb.2019.00616
    [92] Fu L, Penton C R, Ruan Y, et al. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease[J]. Soil Biol. Biochem., 2017, 104: 39 − 48. doi: 10.1016/j.soilbio.2016.10.008
    [93] 朱世江, 马丽艳, 刘少群. 不同套袋对香蕉主要品质和耐贮性的影响[J]. 农业工程学报, 2009, 25(7): 304 − 307. doi: 10.3969/j.issn.1002-6819.2009.07.055
    [94] Kheng T Y, Ding P, Abdul Rahman N A. Determination of optimum harvest maturity and physico-chemical quality of Rastali banana (Musa AAB Rastali) during fruit ripening[J]. J. Sci. Food Agric., 2012, 92(1): 171 − 176. doi: 10.1002/jsfa.4559
    [95] Li W, Shao Y, Chen W, et al. The effects of harvest maturity on storage quality and sucrose-metabolizing enzymes during banana ripening[J]. Food Bioproc. Tech., 2011, 4(7): 1273 − 1280. doi: 10.1007/s11947-009-0221-z
    [96] 张江周, 王 斌, 刘 林, 等. 夏季不同采收时间对香蕉果实品质和加工特性的影响[J]. 热带作物学报, 2018, 39(11): 2272 − 2278. doi: 10.3969/j.issn.1000-2561.2018.11.023
    [97] 王 斌. 香蕉成熟度、催熟条件和护色剂添加量对香蕉浆品质的影响[D]. 北京: 中国农业大学, 2017.
    [98] 淡 明, 黄梅华, 梁晓君, 等. 不同催熟条件对香蕉后熟均匀性的影响研究[J]. 热带作物学报, 2018, 39(6): 1095 − 1101. doi: 10.3969/j.issn.1000-2561.2018.06.009
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 修回日期:  2021-01-22
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回