留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位酶谱技术在土壤酶学中应用的研究进展与展望

蒋萍萍 刘杰 游少鸿 林华 俞果

蒋萍萍, 刘 杰, 游少鸿, 林 华, 俞 果. 原位酶谱技术在土壤酶学中应用的研究进展与展望[J]. 土壤通报, 2021, 52(2): 454 − 461 doi: 10.19336/j.cnki.trtb.2020060801
引用本文: 蒋萍萍, 刘 杰, 游少鸿, 林 华, 俞 果. 原位酶谱技术在土壤酶学中应用的研究进展与展望[J]. 土壤通报, 2021, 52(2): 454 − 461 doi: 10.19336/j.cnki.trtb.2020060801
JIANG Ping-ping, LIU Jie, YOU Shao-hong, LIN Hua, YU Guo. Application Prospect and Future Perspective of In-situ Zymography of Soil Enzymes[J]. Chinese Journal of Soil Science, 2021, 52(2): 454 − 461 doi: 10.19336/j.cnki.trtb.2020060801
Citation: JIANG Ping-ping, LIU Jie, YOU Shao-hong, LIN Hua, YU Guo. Application Prospect and Future Perspective of In-situ Zymography of Soil Enzymes[J]. Chinese Journal of Soil Science, 2021, 52(2): 454 − 461 doi: 10.19336/j.cnki.trtb.2020060801

原位酶谱技术在土壤酶学中应用的研究进展与展望

doi: 10.19336/j.cnki.trtb.2020060801
基金项目: 国家自然科学基金(41867022),广西高等学校高水平创新团队及卓越学者计划项目(桂财教函[2018]319号)和广西科技计划项目澜沧江-湄公河水环境技术创新平台(2018AD16013-04)资助
详细信息
    作者简介:

    蒋萍萍(1990−),女,广西桂林市人,博士,实验师,研究方向为重金属植物修复,E-mail: Jiangpp@glut.edu.cn

    通讯作者:

    E-mail: yuguo@glut.edu.cn

  • 中图分类号: S154.2

Application Prospect and Future Perspective of In-situ Zymography of Soil Enzymes

  • 摘要: 土壤酶在土壤生态系统的物质循环和能量流动方面具有重要的作用,对其活性的检测是土壤酶学发展的基础。传统的土壤酶活检测手段可以反映土壤酶的活性,但是不能原位反映土壤酶在土壤中的真实情况以及区分酶活在时间、空间上的连续变化情况。原位酶谱技术以荧光底物为基础,能原位获取土壤酶活性分布的二维图像,从微观尺度反映其在空间上的连续变化,区分土壤酶活性的热区和非热区,具有准确度高、空间分辨率高和时间分辨率高等优点。本文综述了原位酶谱技术的工作原理、技术优势以及国内外学者应用该技术开展的相关研究,并展望了原位酶谱与其他技术结合的发展方向,以期推动该技术在国内的发展和应用、为土壤酶学的进一步研究提供支持。
  • 图  1  土壤颗粒与膜之间微界面中原位酶谱底物和产物的扩散过程[21]

    Figure  1.  Diffusion pathways of the substrate and product between the membrane and soil surface during zymography analysis

    表  1  不同土壤酶活性测定技术对比

    Table  1.   Comparison of the measuring method for the soil enzyme activities

    测定方法
    Measuring methods
    原理
    Mechanisms
    优点
    Advantages
    不足
    Disadvantages
    适用条件
    Applicable conditions
    分光光度法(比色法)[5] 土壤酶和底物混合生成有色物质,在特定波长下产生吸收峰,用分光光度计测量生成物的含量 方法成熟度高、应用较早、适用范围广、已被国内外广泛采用 操作复杂、测试耗时较长、选择性和灵敏度不高 破坏性取样、异位分析
    荧光法[15-17] 采用萤光团标记底物作为探针,通过荧光强度的变化来反映土壤酶活性 选择性高、灵敏度高、试样量少、耗时短 分析成本高、底物难以溶解 破坏性取样、异位分析
    酶谱法[13,19-20] 含有饱和荧光底物的膜与土壤接触后,底物被土壤酶降解,在紫外灯下发射荧光,通过荧光信号强度在膜上的分布确定酶活性的分布 准确度高、空间分辨率高、时间分辨率高 适用酶种类较少、尼龙膜上荧光底物处于饱和状态导致测量结果偏高 非破坏性取样、原位分析
    下载: 导出CSV

    表  2  原位酶谱技术在土壤酶学中的应用研究

    Table  2.   Application of in-situ zymography in Soil Enzymology

    酶类型
    Enzymology type
    影响因素
    Influence factor
    参考文献
    Reference
    纤维素酶、几丁质酶和磷酸酶 根系(羽扇豆)    Spohn等[29]
    β-葡萄糖苷酶、纤维二糖水解酶、亮氨酸氨基肽酶和磷酸酶 根系(扁豆和玉米)  Razavi等[24]
    纤维二糖水解酶、β-葡萄糖苷酶、磷酸酶、硫酸酯酶 根系分泌物      Zhang等[34]
    β-葡萄糖苷酶、几丁质酶和酸性磷酸酶 葡萄糖        Heitkötter等[19]
    β-葡萄糖苷酶、纤维二糖水解酶、磷酸酶 施肥         Wei等[35]
    酸性磷酸酶、碱性磷酸酶 施肥         Spohn等[36]
    β-葡萄糖苷酶、磷酸单酯酶、乙酰葡糖胺糖苷酶 施肥、生物炭、重金属 Liu等[37]
    磷酸酶、β-葡萄糖苷酶 重金属        Duan等[38]
    磷酸酶、几丁质酶 温度         Ge等[33]
    纤维二糖水解酶、亮氨酸氨基肽酶、磷酸酶 温度         Ma等[12]
    β-葡萄糖苷酶、几丁质酶、磷酸酶 蚯蚓         Hoang等[39]
    蛋白酶、淀粉酶 −          Spohn等[20]
    下载: 导出CSV
  • [1] Badiane N N Y, Chotte J L, Pate E, et al. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions[J]. Applied Soil Ecology, 2001, 18(3): 229 − 238. doi: 10.1016/S0929-1393(01)00159-7
    [2] 王理德, 王方琳, 郭春秀, 等. 土壤酶学研究进展[J]. 土壤, 2016, 48(1): 12 − 21.
    [3] 王 菲, 杨官品, 李晓军, 等. 微生物标志物在土壤污染生态学研究中的应用[J]. 生态学杂志, 2008, (1): 105 − 110.
    [4] 张体彬, 展小云, 冯 浩. 盐碱地土壤酶活性研究进展和展望[J]. 土壤通报, 2017, 48(2): 495 − 500.
    [5] Burns R G, Deforest J L, Marxsen J, et al. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216 − 234. doi: 10.1016/j.soilbio.2012.11.009
    [6] Liang Q, Gao R T, Xi B D, et al. Long-term effects of irrigation using water from the river receiving treated industrial wastewater on soil organic carbon fractions and enzyme activities[J]. Agricultural Water Management, 2014, 135: 100 − 108. doi: 10.1016/j.agwat.2014.01.003
    [7] 王艳玲, 何园球, 周晓冬, 王 志. 两种培肥途径下红壤磷素储供能力的动态变化[J]. 土壤通报, 2019, 50(4): 0000 − 0000.
    [8] Lee S H, Kim E Y, Hyun S, et al. Metal availability in heavy metal-contaminated open burning and open detonation soil: Assessment using soil enzymes, earthworms, and chemical extractions[J]. Journal of Hazardous Materials, 2009, 170: 382 − 388. doi: 10.1016/j.jhazmat.2009.04.088
    [9] Jeremy P, Vincent E J J, Robert T E M, et al. Seasonality alters drivers of soil enzyme activity in subalpine grassland soil undergoing climate change[J]. Soil Biology and Biochemistry, 2018, 124: 266 − 274. doi: 10.1016/j.soilbio.2018.06.023
    [10] Wood T G. Field investigations on the decomposition of leaves of Eucalyptus delegatensis in relation to environmental factors[J]. Pedobiologia, 1974, 14: 343 − 371.
    [11] Kravchenko A, Guber A, Razavi B, et al. Spatial patterns of extracellular enzymes: Combining X-ray computed microtomography and 2D zymography[J]. Soil Biology and Biochemistry, 2019, 135: 411 − 419. doi: 10.1016/j.soilbio.2019.06.002
    [12] Ma X M, Razavi B S, Holz M, et al. Warming increases hotspot areas of enzyme activity and shortens the duration of hot moments in the root-detritusphere[J]. Soil Biology & Biochemistry, 2017, (107): 226 − 233.
    [13] 刘玉槐, 魏晓梦, 祝贞科, 等. 土壤原位酶谱技术研究进展[J]. 土壤通报, 2017, 48(5): 1268 − 1274.
    [14] 邵文山, 李国旗. 土壤酶功能及测定方法研究进展[J]. 北方园艺, 2016, (9): 188 − 193.
    [15] Freeman C, Liska G, Ostle N J, et al. The use of fluorogenic substrates for measuring enzyme activity in peatlands[J]. Plant and Soil, 1995, 175: 147 − 152. doi: 10.1007/BF02413020
    [16] 部金凤, 邹敬东, 张心昱, 等. 不同荧光校正方法对土壤水解酶活性测定结果影响的比较研究[J]. 土壤通报, 2014, 45(3): 660 − 665.
    [17] 张丽莉, 武志杰, 陈利军, 等. 微孔板荧光法对土壤糖酶活性的测定研究[J]. 光谱学与光谱分析, 2009, 5: 1341 − 1344. doi: 10.3964/j.issn.1000-0593(2009)05-1341-04
    [18] 殷陶刚, 李玉泽. 土壤酶活性影响因素及测定方法的研究进展[J]. 矿产勘查, 2019, 10(6): 1523 − 1528. doi: 10.3969/j.issn.1674-7801.2019.06.033
    [19] Heitkotter J, Marschner B. Soil zymography as a powerful tool for exploring hotspots and substrate limitation in undisturbed subsoil[J]. Soil Biology and Biochemistry, 2018, 124: 210 − 217. doi: 10.1016/j.soilbio.2018.06.021
    [20] Spohn M, Carminati A, Kuzyakov Y. Soil zymography e A novel in situ method for mapping distribution of enzyme activity in soil[J]. Soil Biology and Biochemistry, 2013, a, 58: 275 − 280.
    [21] Guber A, Kravchenko A, Razavi B S, et al. Quantitative soil zymography: Mechanisms, processes of substrate and enzyme diffusion in porous media[J]. Soil Biology and Biochemistry, 2018, 127: 156 − 67. doi: 10.1016/j.soilbio.2018.09.030
    [22] Vandooren J, Geurts N, Martens E, et al. Zymography methods for visualizing hydrolytic enzymes[J]. Nature Methods, 2013, 10(3): 211 − 220. doi: 10.1038/nmeth.2371
    [23] Yan S J, Blomme E A G. In Situ Zymography: A Molecular Pathology Technique to Localize Endogenous Protease Activity in Tissue Sections[J]. Veterinart Pathology, 2003, 40(3): 227 − 236.
    [24] Razavi B S, Zarebabadkouki M, Blagodatskaya E, et al. Rhizosphere shape of lentil and maize: Spatial distribution of enzyme activities[J]. Soil Biology and Biochemistry, 2016, 96: 229 − 237. doi: 10.1016/j.soilbio.2016.02.020
    [25] Rao M A, Violante A, Gianfreda L. Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability[J]. Soil Biology and Biochemistry, 2000, 32: 1007 − 1014. doi: 10.1016/S0038-0717(00)00010-9
    [26] Saiya-cork K R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34: 1309 − 1315. doi: 10.1016/S0038-0717(02)00074-3
    [27] Wallenstein M D, Weintraub M N. Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes[J]. Soil Biology and Biochemistry, 2008, 40: 2098 − 2106. doi: 10.1016/j.soilbio.2008.01.024
    [28] Spohn M, Kuzyakov Y. Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation e Coupling soil zymography with 14C imaging[J]. Soil Biology and Biochemistry, 2013b, 67: 106 − 113. doi: 10.1016/j.soilbio.2013.08.015
    [29] Spohn M, Kuzyakov Y. Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots—a soil zymography analysis[J]. Plant and Soil, 2014, 379: 67 − 77. doi: 10.1007/s11104-014-2041-9
    [30] Hinsinger P, Gobran G R, Gregory P J, et al. Rhizosphere geometry and heterogeneity arising from root mediated physical and chemical processes[J]. New Phytologist, 2005, 168: 293 − 303. doi: 10.1111/j.1469-8137.2005.01512.x
    [31] Štursova M, Baldrian P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity[J]. Plant and Soil, 2011, 338: 99 − 110. doi: 10.1007/s11104-010-0296-3
    [32] Šnajdr J, Valaskova V, Merhautova V, et al. Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes[J]. Enzyme and Microbial Technology, 2008, 43(2): 186 − 192. doi: 10.1016/j.enzmictec.2007.11.008
    [33] Ge T D, Wei X M, Razavi B S, et al. Stability and dynamics of enzyme activity patterns in the rice rhizosphere: Effects of plant growth and temperature[J]. Soil Biology and Biochemistry, 2017, 113: 108 − 115. doi: 10.1016/j.soilbio.2017.06.005
    [34] Zhang X C, Dippold M A, Kuzyakov Y, et al. Spatial pattern of enzyme activities depends on root exudate composition[J]. Soil Biology and Biochemistry, 2019, 133: 83 − 93. doi: 10.1016/j.soilbio.2019.02.010
    [35] Wei X M, Razavi B S, Hu Y J, et al. C/P stoichiometry of dying rice root defines the spatial distribution and dynamic of enzyme activities in root-detritusphere[J]. Biology and Fertility of Soils, 2019, 55: 251 − 263. doi: 10.1007/s00374-019-01345-y
    [36] Spohn M, Treichel N S, Cormann M, et al. Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L. depending on P availability[J]. Soil Biology and Biochemistry, 2015, 89: 44 − 51. doi: 10.1016/j.soilbio.2015.06.018
    [37] Liu S B, Pu S Y. Deng D L, et al Comparable effects of manure and its biochar on reducing soil Cr bioavailability and narrowing the rhizosphere extent of enzyme activities[J]. Environmental International, 2020, 134: 105277. doi: 10.1016/j.envint.2019.105277
    [38] Duan C J, Fang L C, Yang C L, et al. Reveal the response of enzyme activities to heavy metals through in situ zymography[J]. Ecotoxicology and Environmental Safety, 2018, 156: 106 − 115. doi: 10.1016/j.ecoenv.2018.03.015
    [39] Hoangd T T, Razavi B S, Kuzyakov Y, et al. Earthworm burrows: Kinetics and spatial distribution of enzymes of C-, N- and P- cycles[J]. Soil Biology and Biochemistry, 2016, 99: 94 − 103. doi: 10.1016/j.soilbio.2016.04.021
    [40] Schofield E J, Brooker R W, Rowntree J K, et al. Plant-plant competition influences temporal dynamism of soil microbial enzyme activity[J]. Soil Biology and Biochemistry, 2019, 139: 107615. doi: 10.1016/j.soilbio.2019.107615
    [41] Grienrson P F, Adams M A. Plant species affect acid phosphatase, ergosterol and microbial P in a Jarrah (Eucalyptus marginata Donn ex Sm.) forest in south-western Australia[J]. Soil Biology and Biochemistry, 2000, 32: 1817 − 1827. doi: 10.1016/S0038-0717(00)00155-3
    [42] Ma X M, Mason-jones K, Liu Y, et al. Coupling zymography with pH mapping reveals a shift lupine phosphorus acquisition strategy driven by cluster roots[J]. Soil Biology and Biochemistry, 2019, 135: 420 − 428. doi: 10.1016/j.soilbio.2019.06.001
    [43] Xian Y, Wang M E, Chen W P. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties[J]. Chemosphere, 2015, 139: 604 − 608. doi: 10.1016/j.chemosphere.2014.12.060
    [44] Razavi B S, Liu S B, Kuzyakov Y. Hot experience for cold-adapted microorgannisms: Temperature sensitivity of soil enzymes[J]. Soil Biology & Biochemistry, 2017, 105: 236 − 243.
    [45] Zhang X C, Kuzyakov Y, Zang H, et al. Rhizosphere hotspots: root hairs and warming control microbial efficiency, carbon utilization and energy production[J]. Soil Biology and Biochemistry, 2020, 148: 107872. doi: 10.1016/j.soilbio.2020.107872
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  12
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-08
  • 修回日期:  2021-01-17
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回