Effect of Long-term Fertilization on Phosphorus Fraction and Availability in Fluvo-Aquic Soil
-
摘要: 研究长期定位施肥对潮土各形态磷含量变化及磷有效性的影响,为潮土合理施用磷肥提供理论依据。长期定位施肥试验开始于1990年,设CK(不施肥)、N2(单施尿素)、N2P(不施钾肥)、N2K(不施磷肥)、N1PK(低量氮肥和磷钾肥)、N2PK(平衡施肥)、N3PK(中高量施肥)、N4PK(高量氮肥和磷钾肥)、N2PKM(化肥和有机肥)、N2PKS(化肥和玉米秸秆还田)10个处理;采用Tiessen-Moir磷素分级法测定各施肥处理土壤不同形态磷含量,用常规方法测定有效磷、全磷含量,分析不同形态磷含量间的相关性。结果表明:经过28年定位施肥处理,N2PKM处理土壤各形态磷含量为盐酸态磷(HCl-P)> 残留态磷(Residual-P)> 氢氧化钠无机磷(NaOH-Pi)> 氢氧化钠有机磷(NaOH-Po)> 碳酸氢钠无机磷(NaHCO3-Pi)> 水溶性磷(Resin-Pi)> 碳酸氢钠有机磷(NaHCO3-Po)。在各施肥处理间,N2P、N1PK、N2PK、N3PK、N4PK、N2PKM、N2PKS处理土壤Resin-Pi、NaHCO3-Pi和NaOH-Pi含量显著高于CK、N2、N2K处理,而处理间NaHCO3-Po、NaOH-Po、HCl-P和Residual-P含量差异不显著。除NaOH-Po外,其它形态磷含量与供试土壤有效磷、全磷含量呈极显著相关,其中Resin-Pi对有效磷贡献最大,说明Resin-Pi是最有效的磷源。供试土壤条件下,合理配施化肥有机肥,可以激发磷素后效,使积累磷素向有效态转化,施用有机肥料能显著提高土壤中各磷组分含量,其中有机无机配施处理(N2PKM)提高程度高于单施化肥(N2PK),施用秸秆处理的各磷组分含量同样显著高于不施肥和化肥处理,且施用有机肥和秸秆处理(N2PKS)的中活性和中等活性磷均与土壤速效磷、全磷呈显著正相关,可在潮土上施用有机肥或秸秆处理,从而保持高比例的土壤有效磷库。
-
关键词:
- 长期定位施肥 /
- 潮土 /
- Tiessen磷分级 /
- 磷素形态 /
- 有效性
Abstract: The changes of various fractions of phosphorus (P) separated with Tiessen-Moir method and its availability under long-term fertilization were investigated, in order to provide a theoretical basis for the reasonable application of P fertilizers in the Fluvo-aquic soil. Different fertilization treatments included no fertilization (control, CK), single application of urea (N2), no potassium (K) fertilizer (N2P); no P fertilizer (N2K), low amount of nitrogen (N) fertilizer combined with P and K fertilizers (N1PK), balanced fertilization (N2PK), medium or high amount of fertilizers (N3PK), high amount of N fertilizer combined with P and K fertilizers (N4PK), chemical combined with organic fertilizers (N2PKM), chemical fertilizers combined with corn straw returning (N2PKS). The correlation between soil P and available P and total P were analyzed. After 28 years of different fertilization treatments, the P fraction contents in the N2PKM treatment were decreased in the order of hydrochloric acid extractable P (HCl-P) > residual P (Residual-P) > sodium hydroxide extractable inorganic P (NaOH-Pi) > sodium hydroxide extractable organic P (NaOH-Po) > sodium bicarbonate extractable inorganic P (NaHCO3-Pi) > Water-soluble P (Resin-Pi)> sodium bicarbonate extractable organic P (NaHCO3-Po). Compared with CK, N2, and N2K treatments, N2P, N1PK, N2PK, N3PK, N4PK, N2PKM and N2PKS treatments significantly increased the contents of Resin-Pi, NaHCO3-Pi and NaOH-Pi, while the contents of NaHCO3-Po, NaOH- Po, HCl-P and Residual-P were not significant among different treatments. Except for NaOH-Po, the correlations among the contents of the other P fractions, available P and total P in the soil were significant. The contribution of Resin-Pi to available P was the most, indicating that Resin-Pi was the most effective source of P. The application of organic fertilizers significantly increased the contents of various P fractions in the soil, especially in the N2PKM compared with N2PK treatments. The contents of various P fractions in the N2PKS treatment were also significantly higher than those in the chemical fertilizer application treatments. The contents of soil medium and medium active P were significantly correlated with those of available P and total P in the organic fertilizer and straw treatments(N2PKS). Organic fertilizer or straw could be applied to fluvo-aquic soil to maintain a high percentage of soil available P pool. -
表 1 各磷素形态之间的相关关系
Table 1. Correlation between various phosphorus fractions
磷形态
Phosphorus
fraction(水溶
性磷)
Resin-Pi(碳酸氢钠
无机磷)
NaHCO3-Pi(碳酸氢钠
有机磷)
NaHCO3-Po(氢氧化钠
无机磷)
NaOH-Pi(氢氧化钠
有机磷)
NaOH-Po(稀盐酸
无机磷)
D.HCl-Pi(浓盐酸
无机磷)
C.HCl-Pi(浓盐酸
有机磷)
C.HCl-Po(残留
态磷)
Residual-PResin-Pi
(水溶性磷)1 0.939** 0.708** 0.941** 0.205 0.801** 0.690** 0.605** 0.745** NaHCO3-Pi
(碳酸氢钠无机磷)1 0.814** 0.965** 0.316 0.926** 0.709** 0.615** 0.712** NaHCO3-Po
(碳酸氢钠有机磷)1 0.765** 0.540** 0.763** 0.410* 0.279 0.480** NaOH-Pi
(氢氧化钠无机磷)1 0.342 0.841** 0.640** 0.569** 0.697** NaOH-Po
(氢氧化钠有机磷)1 0.221 −0.099 −0.138 0.046 D.HCl-Pi
(稀盐酸无机磷)1 0.710** 0.593** 0.652** C.HCl-Pi
(浓盐酸无机磷)1 0.953** 0.586** C.HCl-Po
(浓盐酸有机磷)1 0.476** Residual-P
(残留态磷)1 注:*和**分别表示0.05和0.01水平显著相关。 表 2 各磷素形态与土壤有效磷、全磷、有机质间的相关系数
Table 2. Correlation between various phosphorus fractions and available phosphorus, total phosphorus and organic matter
磷形态
Phosphorus fraction全磷
(Total phosphorus)速效磷
(Olsen-P)有机质
(Organic matter)Resin-Pi (水溶性磷) 0.858** 0.909** 0.556** NaHCO3-Pi (碳酸氢钠无机磷) 0.941** 0.873** 0.630** NaHCO3-Po (碳酸氢钠有机磷) 0.807** 0.674** 0.542** NaOH-Pi (氢氧化钠无机磷) 0.879** 0.851** 0.613** NaOH-Po (氢氧化钠有机磷) 0.269 0.268 0.186 D.HCl-Pi (稀盐酸无机磷) 0.939** 0.727** 0.580** C.HCl-Pi (浓盐酸无机磷) 0.714** 0.640** 0.462** C.HCl-Po (浓盐酸有机磷) 0.619** 0.555** 0.370* Residual-P (残留态磷) 0.609** 0.789** 0.725** 全磷 (Total phosphorus) 1 0.731** 0.551** 速效磷 (Olsen-P) 1 0.620** 有机质 (Organic matter) 1 注:*和**分别表示0.05和0.01水平显著相关。 -
[1] 胡莹莹, 张 民, 宋付朋. 控释复肥中磷素在马铃薯上的效应研究[J]. 植物营养与肥料学报, 2003, 9(2): 174 − 177. doi: 10.3321/j.issn:1008-505X.2003.02.008 [2] 王柏寒, 黄绍敏, 郭斗斗, 等. 长期定位施肥下潮土磷素盈亏及对无机磷的影响[J]. 中国农业科学, 2019, 52(21): 3842 − 3851. doi: 10.3864/j.issn.0578-1752.2019.21.013 [3] RAMAEKERS L, REMANS R, RAO I M, et al. Strategies for improving phosphorus acquisition efficiency of crop plants[J]. Field Crops Research, 2010, 117(2-3): 169 − 176. doi: 10.1016/j.fcr.2010.03.001 [4] 严正娟. 施用粪肥对设施菜田土壤磷素形态与移动性的影响[D]. 中国农业大学, 2015. [5] Balemi T, Negisho K. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review[J]. Journal of Soil Science & Plant Nutrition, 2012, 12(3): 547 − 562. [6] Withers P J, Vandijk K C, Neset T S, et al. Stewardship to tackle global phosphorus inefficiency: The case of Europe[J]. AMBIO, 2015, 44(2): 193 − 206. [7] 晏维金, 亢 宇, 章 申, 等. 磷在土壤中的解吸动力学[J]. 中国环境科学, 2000, 20(2): 97 − 101. doi: 10.3321/j.issn:1000-6923.2000.02.001 [8] CHANG S C, JACKSON M L. Fractionation of soil-P[J]. Soil Science, 1957, 84(2): 133 − 144. doi: 10.1097/00010694-195708000-00005 [9] 蒋柏藩, 顾益初. 石灰性土壤无机磷分级体系的研究[J]. 中国农业科学, 1989, 22(3): 58 − 66. doi: 10.3321/j.issn:0578-1752.1989.03.012 [10] Dalal R C. Soil organic phosphorus[J]. Advances in Agronomy, 1977, 29: 83 − 117. [11] 乔思宇, 周丽丽, 范昊明, 等. 冻融条件下黑土无机磷分级及有效性研究[J]. 土壤, 2016, 48(2): 259 − 264. [12] Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of American Journal, 1982, 46(5): 970 − 976. doi: 10.2136/sssaj1982.03615995004600050017x [13] Tiessen H, Moir J O. Characterization of available P by sequential extraction[J]. Soil Sampling and Methods of Analysis, 1993, 824: 75 − 87. [14] 樊彦波, 李晓秀, 龚艳伟. 不同复垦模式下改进后的Hedley磷分级的研究[J]. 首都师范大学学报(自然科学版), 2014, 35(3): 50 − 56. [15] 李少丛, 万红友, 王兴科, 等. 河南省潮土主要分布区代表性土壤系统分类研究[J]. 土壤通报, 2015, (2): 15 − 21. [16] Gahoonia T S, Asmar F, Giese H, et al. Root-released organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments[J]. European Journal of Agronomy, 2000, 12(3): 281 − 289. [17] 陈 欣, 宇万太, 沈善敏. 磷肥低量施用制度下土壤磷库的发展变化-Ⅱ. 土壤有效磷及土壤无机磷组成[J]. 土壤学报, 1997, (1): 81 − 88. [18] Dalal R C. Soil organic phosphorus[J]. Advance in Agronomy, 1977, 29: 83 − 117. [19] 刘树堂, 韩晓日, 迟 睿, 等. 长期定位施肥对无石灰性潮土磷素状况的影响[J]. 水土保持学报, 2005, 19(5): 43 − 46. doi: 10.3321/j.issn:1009-2242.2005.05.011 [20] 滕泽琴, 李旭东, 韩会阁, 等. 土地利用方式对陇中黄土高原土壤磷组分的影响[J]. 草业学报, 2013, 22(2): 30 − 37. [21] 杨景成, 韩兴国, 黄建辉, 等. 土壤有机质对农田管理措施的动态响应[J]. 生态学报, 2003, (4): 787 − 796. doi: 10.3321/j.issn:1000-0933.2003.04.022 [22] 魏 猛, 张爱君, 李洪民, 等. 基于长期施肥下潮土磷素演变及农学阈值的研究[J]. 西南农业学报, 2018, 31(11): 2373 − 2377. [23] 杨小燕, 范瑞英, 王恩姮, 等. 典型黑土区不同水土保持林表层土壤磷素形态及有效性[J]. 应用生态学报, 2014, 25(6): 1555 − 1560. [24] 鲁如坤, 时正元, 钱承梁. 土壤积累态磷研究-Ⅲ. 几种典型土壤中积累态磷的形态特征及其有效性[J]. 土壤, 1997, (2): 57 − 60+75. [25] 单艳红, 杨林章, 王建国. 土壤磷素流失的途径、环境影响及对策[J]. 土壤, 2004, (6): 602 − 608. doi: 10.3321/j.issn:0253-9829.2004.06.004 [26] Malik M A, Marschner P, Khan K S. Addition of organic and inorganic P sources to soil-Effects on P pools and microorganisms[J]. Soil Biology & Biochemistry, 2012, 49: 106 − 113. [27] Yan Z J, Chen S, Li J L, et al. Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses[J]. Journal of Environmental Management, 2016, 181(1): 26 − 35. [28] Lehmann J, Lan Z, Hyland C, et al. Long-term dynamics of phosphorus forms and retention in manure-amended soils[J]. Environmental ence & Technology, 2005, 39(17): 6672 − 80. [29] Gale P M, Mullen M D, Cieslik C, et al. Phosphorus distribution and availability in response to dairy manure applications[J]. Communications in Soil ence & Plant Analysis, 2000, 31(5-6): 553 − 565. [30] 吕家珑, 张一平, 陶国树, 等. 23年肥料定位试验0 ~ 100 cm壤剖面中各形态磷之间的关系研究[J]. 水土保持学报, 2003, 17(3): 48 − 50. doi: 10.3321/j.issn:1009-2242.2003.03.014 [31] 穆晓慧, 李世清, 党蕊娟. 黄土高原石灰性土壤不同形态磷组分分布特征[J]. 中国生态农业学报, 2008, (6): 1341 − 1347. [32] Zheng Z, Macleod J A, Sanderson J B, et al. Soil phosphorus dynamics after ten annual applications of mineral fertilizers and liquid dairy manure: Fractionation and path analyses[J]. Soil Science, 2004, 169: 449 − 456. doi: 10.1097/01.ss.0000131225.05485.25 -