Bibliometric Analysis on the Research of Microbial Remediation of Soil Pollution
-
摘要: 近年来土壤污染日益严重,现阶段迫切需要研究出高效经济的土壤修复技术来修复污染土壤、实现土壤资源的可持续利用。在此背景下,绿色且环境友好的微生物修复技术具有广阔的发展前景。为了解土壤微生物修复领域的研究状况、研究重点和发展趋势,采用Web of Science数据库对2001年1月 ~ 2020年5月该领域的6171篇文章进行了文献计量研究和可视化处理。分析结果表明:土壤微生物修复领域在全世界的重视程度逐渐升高,发展态势较好,且未来会进一步得到重视。欧洲国家土壤微生物修复研究开展的较早,发展中国家正在成为研究主力。对关键词进行分析可知,重金属污染的修复、微生物群落结构的变化、环境因素的控制和降解机理的探索是修复研究关注的热点。土壤微生物修复与其他修复技术联用可以收到更好的修复效果,这也已成为今后的重要发展趋势。
-
关键词:
- 土壤污染 /
- 微生物修复 /
- 文献计量 /
- Web of Science
Abstract: Soil pollution has been becoming more and more serious in recent years. At this stage, it is urgent to develop efficient and economic soil remediation technology to achieve sustainable use of soil. In this context, the green and environment-friendly bioremediation technology has broad prospects for development. In order to understand the research status, research focus and development trend of soil microbial remediation, 6171 articles in this field from January 2001 to May 2020 were measured and visualized by Web of Science database. The results showed that the importance of soil microbial remediation in the world was gradually increasing, its development trend was good and was on the rise in the future. At present, European countries carried out the research on soil microbial remediation earlier, and developing countries were becoming the main research force. Through the analysis of key words, the remediation of heavy metal pollution, the change of microbial community structure, the control of environmental factors and the degradation mechanism were the hot spots in remediation process. In the future, soil microbial remediation will tend to be combined with other remediation to achieve better remediation effect.-
Key words:
- Soil pollution /
- Microbial remediation /
- Bibliometrics /
- Web of Science
-
表 1 土壤微生物修复研究机构分析
Table 1. Analysis of soil microbial remediation research institutions
排名
Rank机构
Institution国家
Country发文量
Number of article占比 (%)
PercentageH指数
H-index1 中国科学院 中国 380 6.158 47 2 西班牙国家研究委员会 西班牙 125 2.026 36 3 亥姆霍兹联合会 德国 122 1.977 33 4 中国科学院南京土壤研究所 中国 117 1.896 26 5 美国能源部 美国 116 1.880 39 6 法国国家科研中心 法国 114 1.847 29 7 中国科学院大学 中国 111 1.799 29 8 印度科学工业研究委员会 印度 103 1.669 34 9 浙江大学 中国 101 1.637 23 10 加州大学系统 美国 87 1.410 34 表 2 土壤微生物修复研究作者分析
Table 2. Analysis of authors of soil microbial remediation research
排名
Rank作者
Author国家
Country发文量
Number of article篇均被引
Average quotingH指数
H-index所属机构
Affiliated institution1 RAVI NAIDU 澳大利亚 47 40.87 23 纽卡索大学 2 S. BALL ANDREW 澳大利亚 42 15.62 16 皇家墨尔本理工大学 3 YONGMING LUO 中国 42 27.40 19 中国科学院南京土壤研究所 4 GUANGMING ZENG 中国 41 63.29 26 湖南大学 5 YING TENG 中国 32 30.50 18 中国科学院南京土壤研究所 6 XIAOYAN LIU 中国 31 16.87 10 上海大学 7 YONGTAO LI 中国 26 9.31 10 华南农业大学 8 DAYI ZHANG 中国 26 15.19 11 清华大学 9 ERIC M. ADETUTU 澳大利亚 23 17.91 13 澳大利亚弗林德斯大学 10 ESMAEIL SHAHSAVARI 澳大利亚 21 11.57 10 皇家墨尔本理工大学 表 3 发文数量前15的期刊名称及其相关情况
Table 3. The titles of the top 5 journals
排名
Rank期刊名称
Journal name发文量
Number of article占比
Percentage (%)影响因子
Impact factor出版商
Publisher1 Chemosphere 323 5.234 5.108 Elsevier 2 Journal of Hazardous Materials 261 4.229 7.650 Elsevier 3 Environmental Science & Pollution Research 250 4.051 2.914 Springer 4 Science of the Total Environment 230 3.727 5.589 Elsevier 5 International Biodeterioration & Biodegradation 190 3.079 3.824 ScienceDirect 6 Environmental Pollution 124 2.009 5.714 Elsevier 7 Water Air and Soil Pollution 122 1.977 1.774 Springer 8 Environmental Science Technology 110 1.783 7.149 ACS 9 Biodegradation 107 1.734 2.534 Springer 10 Journal of Environmental Management 106 1.718 4.865 Elsevier 11 Ecotoxicology and Environmental Safety 102 1.653 4.527 Elsevier 12 Applied Microbiology and Biotechnology 99 1.604 3.670 Springer 13 Bioresource Technology 83 1.345 6.669 Elsevier 14 Journal of Soils and Sediments 83 1.345 2.669 Springer 15 International Journal of Phytoremediation 81 1.313 2.237 Taylor & Francis Inc 注:影响因子衡量的是在该杂志上发表的论文在特定年份收到的平均被引次数。期刊引文报告(Clarivate Analytics,2019) 表 4 被引文献及其被引次数(前10)
Table 4. Cited documents and the number of citations (top 10)
排名
Rank标题
Title作者
Author来源出版物
Source publication出版年
Year of
publication引用次数
Number of
references1 Extensive sorption of organic compounds to
black carbon, coal, and kerogen in sediments and
soils: Mechanisms and consequences for distribution,
bioaccumulation, and biodegradationCORNELISSEN, G Environmental Science
& Technology2005 989 2 Remediation of heavy metal(loid)s contaminated
soils-To mobilize or to immobilize?BOLAN, NANTHI Journal of Hazardous Materials 2014 676 3 Trace elements in agroecosystems and
impacts on the environmentHE, ZLL Journal of Trace Elements
in Medicine and Biology2005 649 4 Polycyclic aromatic hydrocarbons: environmental
pollution and bioremediationSAMANTA, SK Trends in Biotechnology 2002 630 5 Soil enzymes in a changing environment:
Current knowledge and future directionsBURNS, RICHARD G Soil Biology & Biochemistry 2013 610 6 Abiotic and Microbial Oxidation of
Laboratory-Produced Black Carbon (Biochar)ZIMMERMAN, ANDREW R. Environmental Science
& Technology2010 541 7 Microbial degradation of
organophosphorus compoundsSINGH, BK Fems Microbiology Reviews 2006 503 8 A critical review of the bioavailability and impacts
of heavy metals in municipal solid waste
composts compared to sewage sludgeSMITH, STEPHEN R. Environment International 2009 495 9 The contribution of arbuscular mycorrhizal
fungi in sustainable maintenance of plant
health and soil fertilityJEFFRIES, P Biology and Fertility of Soils 2003 464 10 Bioremediation of polycyclic aromatic hydrocarbons:
current knowledge and future directionsBAMFORTH, SM Journal of Chemical Technology
and Biotechnology2005 444 -
[1] 骆永明, 章海波, 涂 晨, 等. 中国土壤环境与污染修复发展现状与展望[J]. 中国科学院院刊, 2015, 30(Z1): 115 − 124. [2] 李珊珊, 张文毓, 孙长虹, 等. 基于文献计量分析土壤修复的研究现状与趋势[J]. 环境工程, 2015, 33(5): 160 − 165. [3] 刘青松. 土壤污染的类型及危害[J]. 环境导报, 2002, (5): 5 − 6. [4] 范 聪, 肖 炜, 张仕颖. 微生物修复污染土壤的应用研究进展[J]. 贵州农业科学, 2017, 45(8): 53 − 58. doi: 10.3969/j.issn.1001-3601.2017.08.013 [5] 谷庆宝. 利用与修复, 孰先孰后?−从国外经验看中国土壤环境污染防治[J]. 中国生态文明, 2019, (1): 39 − 42. [6] 串丽敏, 郑怀国, 赵同科, 等. 基于专利文献分析的土壤污染修复技术发展现状与展望[J]. 农业环境科学学报, 2016, 35(11): 2041 − 2048. doi: 10.11654/jaes.2016-0219 [7] 李银心. 2020污染土壤的生物修复专刊序言[J]. 生物工程学报, 2020, 36(3): 391 − 396. [8] Zhang Y, Ge S, Jiang M, et al. Combined bioremediation of atrazine-contaminated soil by Pennisetum and Arthrobacter sp. strain DNS10[J]. Environmental Science and Pollution Research, 2014, 21(9): 6234 − 6238. doi: 10.1007/s11356-013-2410-6 [9] Zhang N, Dong G, Ye Z, et al. Microbial remediation of a pentachloronitrobenzene-contaminated soil under Panax notoginseng: A field experiment[J]. Pedosphere, 2020, 30(4): 563 − 569. doi: 10.1016/S1002-0160(17)60476-4 [10] Sun X, Kong T, Xu R, et al. Comparative characterization of microbial communities that inhabit arsenic-rich and antimony-rich contaminated sites: Responses to two different contamination conditions[J]. Environmental Pollution, 2020, 260: 114052. doi: 10.1016/j.envpol.2020.114052 [11] Xiao L, Li M, Dai J, et al. Assessment of earthworm activity on Cu, Cd, Pb and Zn bioavailability in contaminated soils using biota to soil accumulation factor and DTPA extraction[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110513. doi: 10.1016/j.ecoenv.2020.110513 [12] 王春雷. 分析微生物修复及油污土壤改良[J]. 资源节约与环保, 2019, (1): 90 − 91. [13] 杨 海, 黄 新, 林子增, 等. 重金属污染土壤微生物修复技术研究进展[J]. 应用化工, 2019, 48(6): 1417 − 1422. doi: 10.3969/j.issn.1671-3206.2019.06.039 [14] 李 燕. 浅谈生物技术在土壤修复上的应用[J]. 新农业, 2019, (21): 42 − 43. [15] 串丽敏, 郑怀国, 赵同科, 等. 基于Web of Science数据库的土壤污染修复领域发展态势分析[J]. 农业环境科学学报, 2016, 35(1): 12 − 20. doi: 10.11654/jaes.2016.01.002 [16] Hu G, Wang L, Ni R, et al. Which h-index? An exploration within the Web of Science[J]. Scientometrics, 2020, 123: 1225 − 1233. doi: 10.1007/s11192-020-03425-5 [17] 刘 婧. 文献作者分布规律研究−对近十五年来国内洛特卡定律、普赖斯定律研究成果综述[J]. 情报科学, 2004, (1): 123 − 128. doi: 10.3969/j.issn.1007-7634.2004.01.031 [18] Cornelissen G, Gustafsson O, Bucheli T D, et al. Extensive Sorption of Organic Compounds to Black Carbon, Coal, and Kerogen in Sediments and Soils: Mechanisms and Consequences for Distribution, Bioaccumulation, and Biodegradation[J]. Environmental Science & Technology, 2005, 39(18): 6881 − 6895. [19] Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141 − 166. doi: 10.1016/j.jhazmat.2013.12.018 [20] Raghunandan K, Kumar A, Kumar S, et al. Production of gellan gum, an exopolysaccharide, from biodiesel - derived waste glycerol by Sphingomonas spp[J]. Biotech, 2018, 8(1): 71. [21] Verma S, Kuila A. Bioremediation of heavy metals by microbial process[J]. Environmental Technology & Innovation, 2019, 14: 100369. [22] Gupta S, Pathak B, Fulekar M H. Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: a review[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(2): 241 − 269. doi: 10.1007/s11157-014-9353-3 [23] Kanaly R A, Bartha R, Watanabe K, et al. Rapid Mineralization of Benzo[a]pyrene by a Microbial Consortium Growing on Diesel Fuel[J]. Applied and Environmental Microbiology, 2000, 66(10): 4205 − 4211. doi: 10.1128/AEM.66.10.4205-4211.2000 [24] Arun A, Raja P P, Arthi R, et al. Polycyclic Aromatic Hydrocarbons (PAHs) Biodegradation by Basidiomycetes Fungi, Pseudomonas Isolate, and Their Cocultures: Comparative In Vivo and In Silico Approach[J]. Applied Biochemistry & Biotechnology, 2008, 151(2 - 3): 132 − 142. [25] Zhang D, Ding A, Cui S, et al. Whole cell bioreporter application for rapid detection and evaluation of crude oil spill in seawater caused by Dalian oil tank explosion[J]. Water Research, 2013, 47(3): 1191 − 1200. doi: 10.1016/j.watres.2012.11.038 [26] Dhote M, Kumar A, Jajoo A, et al. Assessment of hydrocarbon degradation potentials in a plant–microbe interaction system with oil sludge contamination: A sustainable solution[J]. International Journal of Phytoremediation, 2017, 19(12): 1085 − 1092. doi: 10.1080/15226514.2017.1328388 [27] Muangchinda C, Srisuwankarn P, Boubpha S, et al. The effect of bioaugmentation with Exiguobacterium sp. AO-11 on crude oil removal and the bacterial community in sediment microcosms, and the development of a liquid ready-to-use inoculum[J]. Chemosphere, 2020, 250: 126303. doi: 10.1016/j.chemosphere.2020.126303 [28] Head I M, Gray N D, Larter S R. Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management[J]. Frontiers in Microbiology, 2014, 5: 566. [29] Roy A, Dutta A, Pal S, et al. Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge[J]. Bioresource Technology, 2018, 253: 22 − 32. doi: 10.1016/j.biortech.2018.01.004 [30] Liang B, Yun H, Kong D, et al. Bioaugmentation of triclocarban and its dechlorinated congeners contaminated soil with functional degraders and the bacterial community response[J]. Environmental Research, 2020, 180: 108840. doi: 10.1016/j.envres.2019.108840 [31] Wu M, Wu J, Zhang X, et al. Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil[J]. Chemosphere, 2019, 237: 124456. doi: 10.1016/j.chemosphere.2019.124456 [32] Joutey N T, Sayel H, Bahafid W, et al. Mechanisms of hexavalent chromium resistance and removal by microorganisms[J]. Reviews of environmental contamination and toxicology, 2015, 233: 45 − 69. [33] Deepika K V, Raghuram M, Kariali E, et al. Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean[J]. Ecotoxicology and Environmental Safety, 2016, 134: 1 − 10. doi: 10.1016/j.ecoenv.2016.08.008 [34] 常海伟, 刘代欢, 贺前锋. 重金属污染农田微生物修复机理研究进展[J]. 微生物学杂志, 2018, 38(2): 120 − 127. [35] 黄 晶, 凌婉婷, 孙艳娣, 等. 丛枝菌根真菌对紫花苜蓿吸收土壤中镉和锌的影响[J]. 农业环境科学学报, 2012, 31(1): 99 − 105. [36] Castiglione M R, Giorgetti L, Becarelli S, et al. Polycyclic aromatic hydrocarbon-contaminated soils: bioaugmentation of autochthonous bacteria and toxicological assessment of the bioremediation process by means of Vicia faba L.[J]. Environmental ence & Pollution Research International, 2016, 23(8): 1 − 12. [37] Wu M, Chen L, Tian Y, et al. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media[J]. Environmental Pollution, 2013, 178: 152 − 158. doi: 10.1016/j.envpol.2013.03.004 [38] 余 萃, 廖先清, 刘子国, 等. 石油污染土壤的微生物修复研究进展[J]. 湖北农业科学, 2009, (5): 1260 − 1263. doi: 10.3969/j.issn.0439-8114.2009.05.074 [39] 崔倩倩, 刘朝阳. 石油烃类污染物的微生物修复研究进展[J]. 江西科学, 2020, 38(3): 326 − 330. [40] 邵振润, 张 帅. 提高我国农药利用率的主要措施与对策[J]. 农药, 2014, 53(5): 382 − 385. [41] Cai X, Yuan Y, Yu L, et al. Biochar enhances bioelectrochemical remediation of pentachlorophenol - contaminated soils via long - distance electron transfer[J]. Journal of Hazardous Materials, 2020, 391: 122213. doi: 10.1016/j.jhazmat.2020.122213 [42] 陈家明. 基于生物修复技术修复有机磷农药污染土壤概况[J]. 广东化工, 2017, 44(20): 134 − 135. doi: 10.3969/j.issn.1007-1865.2017.20.063 [43] Zeng J, Lin X, Zhang J, et al. Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium spp. and the degradation in soil[J]. Journal of hazardous materials, 2010, 183(1-3): 718 − 723. doi: 10.1016/j.jhazmat.2010.07.085 [44] Kim S J, Kweon O, Jones R C, et al. Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR - 1[J]. Biodegradation, 2008, 19(6): 859 − 881. doi: 10.1007/s10532-008-9189-z [45] 郭亚男, 王继华. 菲污染土壤的微生物降解机理与微生物修复的研究[C]. 中国环境科学学会科学技术年会论文集 (第一卷), 合肥: 中国环境科学学会, 2018: 367 - 371. [46] Ficarra F A, Santecchia I, Lagorio S H, et al. Genome mining of lipolytic exoenzymes from Bacillus safensis S9 and Pseudomonas alcaliphila ED1 isolated from a dairy wastewater lagoon[J]. Archives of microbiology, 2016, 198(9): 893 − 904. doi: 10.1007/s00203-016-1250-4 [47] Ridl J, Suman J, Fraraccio S, et al. Complete genome sequence of Pseudomonas alcaliphila JAB1 (=DSM 26533), a versatile degrader of organic pollutants[J]. Standards in Genomic ences, 2018, 13(1): 3. doi: 10.1186/s40793-017-0306-7 [48] Wang X, Li D, Gao P, et al. Analysis of biosorption and biotransformation mechanism of Pseudomonas chengduensis strain MBR under Cd(II) stress from genomic perspective[J]. Ecotoxicology and Environmental Safety, 2020, 198: 110655. doi: 10.1016/j.ecoenv.2020.110655 [49] 孙 欣, 高 莹, 杨云锋. 环境微生物的宏基因组学研究新进展[J]. 生物多样性, 2013, 21(4): 393 − 401. [50] Teng Y, Chen W. Soil Microbiomes—a Promising Strategy for Contaminated Soil Remediation: A Review[J]. Pedosphere, 2019, 29(3): 283 − 297. doi: 10.1016/S1002-0160(18)60061-X [51] 吕意华, 田 蕴, 郑天凌. 生物组学在污染环境微生物修复研究中的应用[J]. 微生物学报, 2011, 51(5): 579 − 585. [52] 曾 军, 吴宇澄, 林先贵. 多环芳烃污染土壤微生物修复研究进展[J]. 微生物学报, 2020, 60(12): 2804 − 2815. [53] Oliveira A, Pampulha M E. Effects of long - term heavy metal contamination on soil microbial characteristics[J]. Journal of Bioscience & Bioengineering, 2006, 102(3): 157 − 161. [54] Loukidou M X, Matis K A, Zouboulis A I, et al. Removal of As(V) from wastewaters by chemically modified fungal biomass[J]. Water Research, 2003, 37(18): 4544 − 4552. [55] Chai L, Huang S, Yang Z, et al. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium - containing slag[J]. Journal of Hazardous Materials, 2009, 167(1 - 3): 516 − 522. [56] Jiao S, Yang Y, Xu Y, et al. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China[J]. The ISME Journal, 2020, 14(1): 202 − 216. doi: 10.1038/s41396-019-0522-9 [57] Tian Y, Liu H J, Zheng T L, et al. PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China[J]. Marine Pollution Bulletin, 2008, 57(6 - 12): 707 − 715. [58] Benndorf D, Balcke G U, Harms H, et al. Functional metaproteome analysis of protein extracts from contaminated soil and groundwater[J]. The ISME Journal, 2007, 1(3): 224 − 234. doi: 10.1038/ismej.2007.39 [59] Ma L, Chen N, Feng C, et al. Coupling enhancement of Chromium (VI) bioreduction in groundwater by phosphorus minerals[J]. Chemosphere, 2020, 240: 124896. doi: 10.1016/j.chemosphere.2019.124896 [60] Ma J, Zhang Q, Chen F, et al. Remediation of resins-contaminated soil by the combination of electrokinetic and bioremediation processes[J]. Environmental Pollution, 2020, 260: 114047. doi: 10.1016/j.envpol.2020.114047 -