Effects of Biochar Based Fertilizer on Soil Nutrients, Tea Output and Quality in An Acidified Tea Field
-
摘要: 针对多年生茶园土壤酸化严重、养分失衡、茶叶产质量下降等问题,以七年生酸化茶园为研究对象,设置不施肥(CK)、常规化肥(F)、生物炭(B)、低量生物炭基肥(BF1)、中量生物炭基肥(BF2)和高量生物炭基肥(BF3)6个处理,通过大田试验探究生物炭基肥对酸化茶园土壤肥力性状、茶树养分吸收以及茶叶产质量的影响,揭示生物炭基肥对茶叶的增产提质机理。结果表明:与CK相比,BF1 ~ BF3处理显著提高酸化茶园土壤pH以及铵态氮、硝态氮、速效磷、速效钾、交换性钙和交换性镁含量,且随炭基肥施用量的增加而增大,改土效果明显优于B和F处理;BF1 ~ BF3处理的茶叶养分积累量、SPAD值、产质量以及水浸出物、咖啡碱、氨基酸含量均显著高于CK处理,茶叶酚氨比显著低于CK处理,但与B和F处理的差异不显著;灰色关联分析表明茶叶产质量与土壤pH、铵态氮、速效钾、交换性镁和速效磷以及茶叶SPAD值、氮和镁积累量等因子关联密切,是影响茶叶产质量的主要因子。表明施用生物炭基肥可显著减缓酸化茶园土壤酸性,提高土壤养分有效性,促进茶树对氮、钾和镁的吸收,增强茶树光合作用从而显著提高茶叶的产质量,且以施用2590 kg hm−2生物炭基肥处理的效果较优。Abstract: To address the problems of serious soil acidification, nutrient imbalance and decline of tea production and quality in the perennial tea gardens, a field experiment was conducted in a seven-year-old acidified tea garden to explore the effect and mechanism of biochar based fertilizer on soil fertility, the nutrient uptake, yield and quality of tea. Six treatments were set up as follows: control (CK), chemical fertilizer (F), biochar (B), low, medium and high application rates of biochar based fertilizer (BF1, BF2 and BF3, respectively). The results showed that the pH value and the contents of ammonium, nitrogen (NH4+-N), nitrate N (NO3−-N), available phosphorus (P) and potassium (K), exchangeable calcium (Ca) and magnesium (Mg) in the acidified tea garden soil were significantly increased in BF1, BF2 and BF3 treatments compared with CK treatment, and were increased with the application rates of biochar based fertilizer. The improvement effects soil fertility in the BF1, BF2 and BF3 treatments were much better than those in the B and F treatments. The nutrient accumulation, SPAD value, yield and quality, water extract, caffeine and amino acid contents of tea leaves in the BF1, BF2 and BF3 treatments were significantly higher than those in the CK treatment.The phenol-ammonia ratio of tea leaves was significantly lower than that in the CK treatment, and was not significantly different between B and F treatments. The results of grey slope correlation analysis showed that tea yield and quality were closely related to soil pH, the contents of NH4+-N, available K, exchangeable Mg and available P, tea SPAD value, N and Mg accumulation in tea leaves, which were the main factors affecting tea yield and quality. In conclusion, the application of biochar based fertilizer significantly decreased the acidity of acidified tea garden soil, increased the availability of soil nutrients, promoted the absorption of N, K and Mg by tea trees, and enhanced the photosynthesis of tea trees, which led to the significant increase in the yield and quality of tea. The application rate of 2590 kg hm−2 biochar based fertilizer showed good effect on yield and quality of tea.
-
表 1 茶叶品质指标权重
Table 1. Weights of tea quality index
茶叶品质指标
Tea quality index权重
Weight氨基酸 0.202 咖啡碱 0.252 水浸出物 0.221 酚氨比 0.216 茶多酚 0.108 表 2 不同处理茶叶中氮、磷、钾、钙和镁累积量的差异分析
Table 2. Difference analysis of nitrogen,phosphorus,potassium,calcium and magnesium accumulation in tea under different treatments
处理
Treatment茶叶养分累积量
Nutrient accumulation in tea
(g kg−1)氮
Nitrogen磷
Phosphorus钾
Potassium钙
Calcium镁
MagnesiumCK 40.28 ± 0.30 c 5.96 ± 0.05 c 11.39 ± 0.04 d 0.26 ± 0.01 d 0.24 ± 0.01 b B 42.44 ± 0.43 b 6.40 ± 0.25 b 11.55 ± 0.03 d 0.28 ± 0.01 c 0.25 ± 0.01 ab F 43.56 ± 0.54 ab 6.48 ± 0.08 b 11.73 ± 0.14 cd 0.27 ± 0.01 c 0.26 ± 0.03 ab BF1 43.24 ± 0.30 b 6.95 ± 0.08 a 12.05 ± 0.08 bc 0.30 ± 0.01 b 0.27 ± 0.02 ab BF2 43.60 ± 0.59 ab 7.13 ± 0.17 a 12.60 ± 0.20 a 0.32 ± 0.01 a 0.29 ± 0.01 a BF3 45.34 ± 0.94 a 6.93 ± 0.11 a 12.40 ± 0.21 ab 0.31 ± 0.01 ab 0.30 ± 0.01 a 注:同列不同小写字母表示处理间差异显著(P < 0.05),下同。 表 3 不同处理茶树的百芽重、芽头密度和茶青产量
Table 3. The weight of hundred buds,bud head density and yield of tea under different treatments
处理
Treatment百芽重
Weight of hundred buds
(g)芽头密度
Bud head density
(m2)茶青产量
Tea yield
(kg hm−2)CK 57.67 ± 1.55 c 443.95 ± 6.60 b 2558.27 ± 33.48 d B 62.96 ± 2.40 bc 450.84 ± 7.00 b 2835.05 ± 66.79 c F 65.42 ± 2.09 b 454.24 ± 4.45 b 2970.03 ± 74.66 c BF1 73.11 ± 2.12 a 488.66 ± 9.66 a 3569.38 ± 63.16 b BF2 78.64 ± 1.41 a 507.48 ± 4.94 a 3990.10 ± 67.18 a BF3 75.16 ± 2.00 a 491.45 ± 6.23 a 3691.52 ± 58.35 b 表 4 茶叶产量与可能影响因子的灰色关联分析
Table 4. Grey correlation analysis between tea yield and potential impact factors
排序
Order可能影响因子
Potential impact factor灰色关联系数
Grey correlation coefficient排序
Order可能影响因子
Potential impact factor灰色关联系数
Grey correlation coefficient1 pH 0.851 8 交换性镁 0.615 2 铵态氮 0.715 9 速效磷 0.607 3 SPAD 0.676 10 磷积累量 0.584 4 氮积累量 0.670 11 钙积累量 0.570 5 钾积累量 0.654 12 硝态氮 0.552 6 镁积累量 0.630 13 交换性钙 0.540 7 速效钾 0.618 表 5 不同处理茶叶品质的差异分析
Table 5. Difference analysis of tea quality under different treatments
处理
Treatment水浸出物
Aqueous extract
(%)咖啡碱
Caffeine
(%)茶多酚
Tea polyphenol
(%)氨基酸
Free amino acid
(%)酚氨比
Phenol/amino品质综合指数
Comprehensive quality indexCK 40.42 ± 0.37 c 1.90 ± 0.05 c 13.50 ± 0.30 a 2.55 ± 0.06 c 5.29 ± 0.08 a 13.57 ± 0.01 c B 42.85 ± 2.16 bc 2.62 ± 0.16 b 14.37 ± 0.60 a 2.70 ± 0.04 c 5.33 ± 0.16 a 14.53 ± 0.56 bc F 43.54 ± 2.14 bc 2.74 ± 0.10 ab 14.43 ± 0.58 a 3.05 ± 0.04 b 4.74 ± 0.13 ab 14.73 ± 0.49 bc BF1 48.31 ± 1.82 ab 2.58 ± 0.05 b 14.37 ± 0.21 a 2.98 ± 0.02 b 4.83 ± 0.09 ab 15.73 ± 0.45 ab BF2 49.06 ± 2.87 ab 2.79 ± 0.12 ab 14.58 ± 0.71 a 3.27 ± 0.04 a 4.46 ± 0.23 b 16.01 ± 0.71 ab BF3 50.82 ± 0.79 a 2.99 ± 0.12 a 14.19 ± 0.38 a 3.07 ± 0.13 ab 4.64 ± 0.29 b 16.35 ± 0.25 a 表 6 茶叶品质与可能影响因子的灰色关联分析
Table 6. Grey correlation analysis between tea quality and potential impact factors
排序
Order可能影响因子
Potential impact factor灰色关联系数
Grey correlation coefficient排序
Order可能影响因子
Potential impact factor灰色关联系数
Grey correlation coefficient1 铵态氮 0.889 8 磷积累量 0.652 2 氮积累量 0.804 9 交换性镁 0.636 3 速效磷 0.763 10 钾积累量 0.598 4 镁积累量 0.743 11 交换性钙 0.537 5 速效钾 0.739 12 钙积累量 0.512 6 SPAD 0.717 13 硝态氮 0.509 7 pH 0.672 14 − − -
[1] 苏有健, 王烨军, 张永利, 等. 茶园土壤酸化阻控与改良技术[J]. 中国茶叶, 2018, 40(3): 9 − 11. doi: 10.3969/j.issn.1000-3150.2018.03.003 [2] 樊战辉, 唐小军, 郑 丹, 等. 茶园土壤酸化成因及改良措施研究和展望[J]. 茶叶科学, 2020, 40(1): 15 − 25. doi: 10.3969/j.issn.1000-369X.2020.01.002 [3] 杨冬雪, 钟珍梅, 陈剑侠, 等. 福建省茶园土壤养分状况评价[J]. 海峡科学, 2010, 42(6): 129 − 131. doi: 10.3969/j.issn.1673-8683.2010.06.046 [4] Zhang J, Yang R, Li Y C, et al. Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations[J]. Ecotoxicology and Environmental Safety, 2020, 195(195): 1 − 12. [5] 王子腾, 耿元波, 梁 涛, 等. 减施化肥和配施有机肥对茶园土壤养分及茶叶产量和品质的影响[J]. 生态环境学报, 2018, 27(12): 2243 − 2251. [6] Wang L, Butterly C R, Wang Y, et al. Effect of crop residue biochar on soil acidity amelioration in strongly acidic tea garden soils[J]. Soil Use & Management, 2013, 30(1): 119 − 128. [7] 王 峰, 吴志丹, 陈玉真, 等. 生物质炭配施氮肥对茶树生长及氮素利用率的影响[J]. 茶叶科学, 2018, 38(4): 331 − 341. doi: 10.3969/j.issn.1000-369X.2018.04.001 [8] 郑慧芬, 吴红慧, 翁伯琦, 等. 施用生物炭提高酸性红壤茶园土壤的微生物特征及酶活性[J]. 中国土壤与肥料, 2019, (2): 68 − 74. doi: 10.11838/sfsc.1673-6257.18244 [9] 殷大伟, 金 梁, 郭晓红, 等. 生物炭基肥替代化肥对砂壤土养分含量及青贮玉米产量的影响[J]. 东北农业科学, 2019, (4): 19 − 24. [10] 陈 懿, 林英超, 黄化刚, 等. 炭基肥对植烟黄壤性状和烤烟养分积累、产量及品质的影响[J]. 土壤学报, 2019, 56(2): 495 − 504. doi: 10.11766/trxb201806060133 [11] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. [12] 傅海平, 张亚莲, 常硕其, 等. 茶园土壤肥力质量的综合评价[J]. 江西农业学报, 2011, 23(3): 78 − 81. doi: 10.3969/j.issn.1001-8581.2011.03.023 [13] 任 伟, 赵 鑫, 黄收兵, 等. 不同密度下增施有机肥对夏玉米物质生产及产量构成的影响[J]. 中国生态农业学报, 2014, 22(10): 1146 − 1155. [14] 蒋梦蝶, 何志龙, 孙 赟, 等. 尿素和生物质炭对茶园土壤pH值及CO2和CH4排放的影响[J]. 农业环境科学学报, 2018, 37(1): 196 − 204. doi: 10.11654/jaes.2017-0876 [15] Nicole W, Marcus H, Reinhard W, et al. The role of nitrifier denitrification in the production of nitrous oxide revisited[J]. Soil Biology and Biochemistry, 2018, 123: 3 − 16. doi: 10.1016/j.soilbio.2018.03.020 [16] 张 帅, 户杉杉, 潘荣艺, 等. 茶园土壤酸化研究进展[J]. 茶叶, 2019, 45(1): 17 − 23. doi: 10.3969/j.issn.0577-8921.2019.01.009 [17] 彭 银, 达布希拉图. 炭基肥和炭醋肥对土壤氮磷钾的影响[J]. 浙江农业科学, 2019, 60(7): 1135 − 1137. [18] Wang J, Xiong Z, Kuzyakoy Y. Biochar stability in soil: meta – analysis of decomposition and priming effects[J]. Global Change Biology Bioenergy, 2016, 8(3): 512 − 523. doi: 10.1111/gcbb.12266 [19] 张旭辉, 李治玲, 李 勇, 等. 施用生物炭对西南地区紫色土和黄壤的作用效果[J]. 草业学报, 2017, 26(4): 63 − 72. doi: 10.11686/cyxb2016367 [20] 张 萌, 魏全全, 肖厚军, 等. 不同用量专用生物炭基肥对贵州朝天椒提质增效的影响[J]. 核农学报, 2019, 33(7): 1457 − 1464. doi: 10.11869/j.issn.100-8551.2019.07.1457 [21] 王 磊, 刘秋凤, 苏 敏, 等. 生物质炭及与有机肥配施对桂香22号茶树生长、氮素吸收及品质的影响[J]. 热带农业科学, 2018, 38(6): 18 − 24. [22] Louis M M, Thomas E S, Rajesh C, et al. Phosphorus sorption and availability from biochar and soil/biochar mixtures[J]. Clean-Soil, Air, Water, 2014, 42(5): 626 − 634. doi: 10.1002/clen.201300089 [23] 姜 敏, 汪 霄, 张润花, 等. 生物炭对土壤不同形态钾素含量的影响及机制初探[J]. 土壤通报, 2016, 47(6): 1433 − 1441. [24] 王雪玉, 刘金泉, 胡 云, 等. 生物炭对黄瓜根际土壤细菌丰度、速效养分含量及酶活性的影响[J]. 核农学报, 2018, 32(2): 370 − 376. doi: 10.11869/j.issn.100-8551.2018.02.0370 [25] Zhang X, Luo J L, Zhang C, et al. The Effects of three fertilization treatments on soil fertility and yield and quality of fresh leaves in tea gardens[J]. Materials Science Forum, 2020, 984: 153 − 159. doi: 10.4028/www.scientific.net/MSF.984.153 [26] 张雪凌, 姜慧敏, 刘 晓, 等. 优化氮肥用量和基追比例提高红壤性水稻土肥力和双季稻氮素的农学效应[J]. 植物营养与肥料学报, 2017, 23(2): 351 − 359. doi: 10.11674/zwyf.16240 [27] Zhang A, Zhou X, Li M, et al. Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China[J]. Chemosphere, 2017, 186(11): 986 − 993. [28] 李相楹, 张珍明, 张清海, 等. 茶园土壤氮磷钾与茶叶品质关系研究进展[J]. 广东农业科学, 2014, 41(23): 56 − 60. doi: 10.3969/j.issn.1004-874X.2014.23.013 [29] 杨浩瑜, 刘惠见, 张乃明, 等. 化肥减施处理对茶园土壤养分及茶叶品质的影响[J]. 南方农业学报, 2020, 51(4): 887 − 896. [30] 陈婵婵. 陕西茶园土壤养分与茶叶相应成分关系的研究[D]. 咸阳: 西北农林科技大学, 2008. [31] 李艳梅, 张兴昌, 廖上强, 等. 生物炭基肥增效技术与制备工艺研究进展分析[J]. 农业机械学报, 2017, 48(10): 1 − 14. doi: 10.6041/j.issn.1000-1298.2017.10.001 [32] 朱旭君, 王玉花, 张 瑜, 等. 施肥结构对茶园土壤氮素营养及茶叶产量品质的影响[J]. 茶叶科学, 2015, 35(3): 248 − 254. doi: 10.3969/j.issn.1000-369X.2015.03.008 [33] 罗 凡, 张 厅, 龚雪蛟, 等. 不同施肥方式对茶树新梢氮磷钾含量及光合生理的影响[J]. 应用生态学报, 2014, 25(12): 3499 − 3506. [34] 李俊强, 林利华, 张 帆, 等. 施肥模式对茶叶营养累积及土壤肥力的影响[J]. 江苏农业科学, 2019, 47(7): 170 − 174. -