留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同年限有机栽培对土壤生物固氮活性的影响

赵艳利 魏晓梦 吴传发 邓扬悟 廖健利 黄丹枫 吴金水 葛体达

赵艳利, 魏晓梦, 吴传发, 邓扬悟, 廖健利, 黄丹枫, 吴金水, 葛体达. 不同年限有机栽培对土壤生物固氮活性的影响[J]. 土壤通报, 2021, 52(3): 602 − 610 doi: 10.19336/j.cnki.trtb.2020091801
引用本文: 赵艳利, 魏晓梦, 吴传发, 邓扬悟, 廖健利, 黄丹枫, 吴金水, 葛体达. 不同年限有机栽培对土壤生物固氮活性的影响[J]. 土壤通报, 2021, 52(3): 602 − 610 doi: 10.19336/j.cnki.trtb.2020091801
ZHAO Yan-li, WEI Xiao-meng, WU Chuan-fa, DENG Yang-wu, LIAO Jian-li, HUANG Dan-feng, WU Jin-shui, GE Ti-da. Soil Biological Nitrogen Fixation under Organic Management in Different Years[J]. Chinese Journal of Soil Science, 2021, 52(3): 602 − 610 doi: 10.19336/j.cnki.trtb.2020091801
Citation: ZHAO Yan-li, WEI Xiao-meng, WU Chuan-fa, DENG Yang-wu, LIAO Jian-li, HUANG Dan-feng, WU Jin-shui, GE Ti-da. Soil Biological Nitrogen Fixation under Organic Management in Different Years[J]. Chinese Journal of Soil Science, 2021, 52(3): 602 − 610 doi: 10.19336/j.cnki.trtb.2020091801

不同年限有机栽培对土壤生物固氮活性的影响

doi: 10.19336/j.cnki.trtb.2020091801
基金项目: 国家重点研发计划(2019YFC0605004)、江西省重点研发计划(20202BBG73007)和湖南省国际科技创新合作基地(2018WK4012)资助
详细信息
    作者简介:

    赵艳利(1993−),女,河南省安阳市人,硕士,主要研究方向为环境生物技术,E-mail: 1229203241@qq.com

    通讯作者:

    E-mail: tosang@foxmail.com

  • 中图分类号: S147.5

Soil Biological Nitrogen Fixation under Organic Management in Different Years

  • 摘要: 氮是对作物生长和产量维持最重要的元素。有机农业无化学肥料投入,生物固氮是氮素最重要的来源之一。然而到目前为止,有机栽培对农田土壤微生物固氮活性的影响尚不清楚。本文以20年常规栽培花椰菜农田土壤为对照,比较经10年、14年、20年有机栽培后土壤微生物固氮活性的变化,并通过多元统计分析探究了影响土壤生物固氮活性的因素。研究结果表明,在7天的测定周期中,与常规栽培相比,10年和14年有机栽培降低了前期土壤生物固氮速率,但整个周期累积固氮在量各处理间无显著差异。不同年限有机栽培对土壤生物固氮速率和累积固氮量影响显著,整体而言14年有机栽培的最低,10年和20年有机栽培间的差异因培养时间而异。培养结束时,常规栽培土壤固氮速率接近于0,有机栽培的花椰菜土壤则仍保持较高活性。皮尔森相关分析和冗余分析(RDA)表明,NH4+、NO3及Olsen P含量是影响有机栽培土壤生物固氮活性的关键因素;其中,NO3对固氮有抑制作用,Olsen P则促进了土壤生物固氮活性的增加。
  • 图  1  不同有机栽培花椰菜农田土壤理化性质

    相同字母表示不同处理间无显著差异(p > 0.05),不同字母表示不同处理间差异显著(p < 0.05)。NH4+:氨态氮,NO3:硝态氮,Olsen P:有效磷,下同。C20:20年常规,O10:10年有机农业,O14:14年有机农业,O20:20年有机农业,下同

    Figure  1.  Soil physics and chemistry properties under organic and conventional cauliflower planting in different years

    图  2  不同有机年限和20年常规花椰菜农田土壤微生物固氮速率

    Figure  2.  N2-fixing rate of soils under organic and conventional cauliflower planting in different years.

    图  3  土壤理化性质对固氮速率(a)和累积固氮量(b)影响的RDA分析及方差分解(c、d).

    SOC有机碳;TN总氮;TP总磷;Clay黏粒;RDA1第一轴解释率;PDA2第二轴解释率;Residuals = 23.1%残差 = 23.1%

    Figure  3.  RDA and variance decomposition analyses for the effect of soil properties on N2-fixing rate and cumulative N2 fixation amount.

    表  1  栽培模式及采样点基本情况

    Table  1.   Information of sampling sites

    采样点
    Sampling site
    栽培模式
    Cultivation model
    经纬度
    Latitude and longitude
    海拔(m)
    Altitude
    年限
    Year
    种植密度(g cm−3
    Plating density
    采集土样编号
    Sampling No.
    S0 常规栽培 116.76 E,35.84 N 56.5 20 1.70 C20
    S1 有机栽培 116.76 E,35.84 N 52.8 10 1.81 O10
    S2 有机栽培 116.77 E,35.86 N 55.7 14 1.82 O14
    S3 有机栽培 116.93 E,36.03 N 70.1 20 1.74 O20
    下载: 导出CSV

    表  2  不同年限有机栽培和20常规栽培花椰菜农田土壤固氮速率与累积固氮量差异的单因素方差分析

    Table  2.   One-way ANOVA for N2-fixing rate and cumulative N2-fixation amount of soils under organic and conventional cauliflower planting with different years.

    有机年限
    Planting year
    时间(d)
    Time
    D1D2D3D5D7
    C20 aA aA aA aA bAB
    O10 aA aA bB bB aAB
    O14 aA bB cC cC aC
    O20 aA aA aAB bcAB bBC
      注:D1-D7分别代表第1 ~ 7天的测定值,不同小写字母表示固氮速率差异显著,不同大写字母表示累积固氮量差异显著。
    下载: 导出CSV

    表  3  土壤理化性质与固氮活性及累积固氮量的皮尔森相关系数

    Table  3.   Pearson correlation between soil properties and N2-fixing rate and cumulative N2 fixation amount

    土壤理化指标
    Soil property
    固氮活性
    N2−fixing
    时间(d)
    Time
    D1D2D3D5D7
    pH 固氮速率 0.149 0.382 −0.003 −0.152 0.446
    氨态氮 0.186 −0.490 −0.506 −0.373 0.279
    硝态氮 0.102 −0.697* −0.904*** −0.565* 0.548
    有效磷 −0.259 0.401 0.829*** 0.673* −0.865***
    有机碳 0.037 0.378 0.434 0.892*** −0.433
    总氮 −0.239 0.147 0.390 0.647* −0.291
    总磷 −0.367 0.489 0.940*** 0.701* −0.805**
    黏粒 −0.203 0.019 0.050 −0.151 −0.152
    粉粒 −0.472 0.239 0.536 −0.064 −0.516
    沙粒 0.427 −0.129 −0.424 0.196 0.484
    累积固氮量 0.149 0.388 0.136 0.114 0.131
    氨态氮 0.186 −0.474 −0.544 −0.539 −0.287
    硝态氮 0.102 −0.684* −0.914*** −0.803** −0.443
    有效磷 −0.259 0.380 0.751** 0.726** 0.238
    有机碳 0.037 0.376 0.456 0.655* 0.671*
    总氮 −0.239 0.131 0.336 0.503 0.505
    总磷 −0.367 0.461 0.863*** 0.856*** 0.290
    黏粒 −0.203 0.006 0.039 0.012 −0.295
    粉粒 −0.472 0.207 0.472 0.286 −0.316
    沙粒 0.427 −0.101 −0.352 −0.156 0.453
      注:星号表示相关性显著性(* P < 0.05;** P < 0.01;*** P < 0.001)
    下载: 导出CSV
  • [1] Schrama M, De Haan J J, Kroonen M. Crop yield gap and stability in organic and conventional farming systems[J]. Agriculture, Ecosystems & Environment, 2018, 256: 123 − 130.
    [2] 刘晓梅, 余宏军, 李 强, 等. 有机农业发展概述[J]. 应用生态学报, 2016, 27(4): 1303 − 1313.
    [3] Shen J, Zhu Q, Jiao X, et al. Agriculture Green Development: a model for China and the world[J]. Frontiers of Agricultural Science and Engineering, 2020, 7(1): 5 − 13. doi: 10.15302/J-FASE-2019300
    [4] Kapusta-duch J, Leszczynaska T. Comparison of Vitamin C and β-Carotene in Cruciferous Vegetables Grown in Diversified Ecological Conditions[J]. Polish Journal of Environmental Studies, 2013, 22(1): 167 − 173.
    [5] Altuntas O. A Comparative Study on the Effects of Different Conventional, Organic and Bio-Fertilizers on Broccoli Yield and Quality[J]. Applied Ecology and Environmental Research, 2018, 16(2): 1595 − 1608. doi: 10.15666/aeer/1602_15951608
    [6] Elmi A, Anderson A K, Albinali A S. Comparative study of conventional and organic vegetable produce quality and public perception in Kuwait[J]. Kuwait Journal of Science, 2019, 46(4): 120 − 127.
    [7] Reganold J P, Wachter J M. Organic agriculture in the twenty-first century[J]. Nature Plants, 2016, 2(2): 15221. doi: 10.1038/nplants.2015.221
    [8] Pang X P, Letey J. Organic Farming: Challenge of Timing Nitrogen Availability to Crop Nitrogen Requirements[J]. Soil Science Society of America Journal, 2000, 64(1): 247 − 253. doi: 10.2136/sssaj2000.641247x
    [9] 沈世华, 荆玉祥. 中国生物固氮研究现状和展望[J]. 科学通报, 2003, 48(6): 535 − 540. doi: 10.3321/j.issn:0023-074X.2003.06.003
    [10] Wang Q, Wang J, Li Y, et al. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation[J]. Science of the Total Environment, 2017, 619(1): 1530 − 1537.
    [11] Marcel M M, Hannah K M, Boran K. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263 − 276. doi: 10.1038/nrmicro.2018.9
    [12] Vitousek P M, Cassman K, Cleveland C, et al. Towards an ecological understanding of biological nitrogen fixation[J]. Biogeochemistry, 2002, 57(1): 1 − 45. doi: 10.1023/A:1015798428743
    [13] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen Cycles: Past, Present, and Future [M]. Ingram: Royal Horticultural Society, 2004.
    [14] Fowler D, Coyle M, Skiba U, et al. The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society B, 2013, 368: 20130164. doi: 10.1098/rstb.2013.0164
    [15] Bottomley P J, Myrold D D. Soil Microbiology, Ecology and Biochemistry (Fourth Edition) [M]. Holand: Academic Press, 2015.
    [16] Adeyeye S, Togun A, Olaniyan A, et al. Effect of Fertilizer and Rhizobium Inoculation on Growth and Yield of SoyabeanVariety (Glycine max L. Merrill)[J]. Advances in Crop Science and Technology, 2017, 05(1): 1000255. doi: 10.4172/2329-8863.1000255
    [17] Reed S C, Cleveland C C, Townsend A R. Functional Ecology of Free-Living Nitrogen Fixation: A Contemporary Perspective[J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42(1): 489 − 512. doi: 10.1146/annurev-ecolsys-102710-145034
    [18] Mohammadi K, Sohrabi Y, Heidari G, et al. Effective factors on biological nitrogen fixation[J]. African Journal of Agricultural Research, 2012, 7(12): 1782 − 1788.
    [19] Nandanwar S, Yele Y, Dixit A, et al. Nitrogen Fixation[M]. London: IntechOpen, 2020.
    [20] Goh Km, Bruce G E. Comparison of biomass production and biological nitrogen fixation of multi-species pastures (mixed herb leys) with perennial ryegrass-white clover pasture with and without irrigation in Canterbury, New Zealand[J]. Agriculture, Ecosystems & Environment, 2005, 110(3): 230 − 240.
    [21] Lori M, Symnaczik S, Mader P, et al. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-Regression[J]. PloS One, 2017, 12(7): e0180442. doi: 10.1371/journal.pone.0180442
    [22] 王 聪, 凌 娟, 张燕英, 等. 海洋固氮菌和解磷菌的分离鉴定及发酵条件优化[J]. 微生物学报, 2018, 58(5): 817 − 829.
    [23] Ferreira T C, Aguilar J V, Souza L A, et al. pH effects on nodulation and biological nitrogen fixation in Calopogonium mucunoides[J]. Brazilian Journal of Botany, 2016, 39(4): 1015 − 1020. doi: 10.1007/s40415-016-0300-0
    [24] 纪广影. 氟磺胺草醚抑制大豆根瘤固氮酶活性机理的研究[J]. 江苏农业科学, 2018, 46(8): 92 − 95.
    [25] 曹丽娟. 咪唑乙烟酸对大豆根瘤固氮酶活性及氮代谢的影响[J]. 中国农业科学, 2010, 43(20): 4192 − 4197. doi: 10.3864/j.issn.0578-1752.2010.20.009
    [26] Ntatsi G, Karkanis A, Yfantopoulos D, et al. Evaluation of the field performance, nitrogen fixation efficiency and competitive ability of pea landraces grown under organic and conventional farming systems[J]. Archives of Agronomy and Soil Science, 2019, 65(3): 294 − 307. doi: 10.1080/03650340.2018.1501155
    [27] Ntatsi, Georgia, Karkanis, et al. Impact of variety and farming practices on growth, yield, weed flora and symbiotic nitrogen fixation in faba bean cultivated for fresh seed production[J]. Acta Agriculturae Scandinavica, 2018, 68(7): 610 − 630.
    [28] Shu W, Pablo G P, Jun Y, et al. Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management[J]. World Journal of Microbiology and Biotechnology, 2012, 28(2): 493 − 503. doi: 10.1007/s11274-011-0840-1
    [29] 李文凤, 房翠翠, 霍英芝. 不同农作物根际自生固氮菌分离及固氮酶活性[J]. 江苏农业科学, 2014, 42(7): 385 − 386. doi: 10.3969/j.issn.1002-1302.2014.07.132
    [30] 邓欣, 刘红艳, 谭济才, 等. 不同种植年限有机茶园土壤微生物群落组成及活性比较[J]. 湖南农业大学学报:自然科学版, 2006, (1): 53 − 56.
    [31] Bloch S E, Ryu M, Ozaydin B, et al. Harnessing atmospheric nitrogen for cereal crop production[J]. Current Opinion in Biotechnology, 2020, 62: 181 − 188. doi: 10.1016/j.copbio.2019.09.024
    [32] Patra A K, Abbadie L, Clays‐josserand A, et al. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils[J]. Environmental Microbiology, 2006, 8(6): 1005 − 1016. doi: 10.1111/j.1462-2920.2006.00992.x
    [33] 谢祖彬, 张燕辉, 王 慧. 稻田生物固氮研究进展及方向[J]. 土壤学报, 2020, 57(3): 540 − 546. doi: 10.11766/trxb201912060662
    [34] Jacinthe P A, Shukla M K, Ikemura Y. Carbon pools and soil biochemical properties in manure-based organic farming systems of semi-arid New Mexico[J]. Soil Use & Management, 2011, 27(4): 453 − 463.
    [35] 周 博, 周建斌. 不同种类有机肥氮素有效性研究[J]. 中国农学通报, 2016, 32(2): 118 − 123. doi: 10.11924/j.issn.1000-6850.casb15070086
    [36] 王艳玲, 何园球, 周晓冬, 王 志. 两种培肥途径下红壤磷素储供能力的动态变化[J]. 土壤通报, 2010, (3): 639 − 643.
    [37] Nakagawa S, Kuwamura T, Yamada K, et al. Relationship between Duration of Practice and Soil Chemical Characteristics of Upland Fields under Organic Farming in Japan[J]. Soil Use and Management, 2018, 34(2): 216 − 218. doi: 10.1111/sum.12419
    [38] Xu Z, Qu M, Liu S, et al. Carbon addition reduces labile soil phosphorus by increasing microbial biomass phosphorus in intensive agricultural systems[J]. Soil Use and Management, 2020, 36(3): 536 − 534. doi: 10.1111/sum.12585
    [39] 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238 − 244.
    [40] 宁川川, 王建武, 蔡昆争. 有机肥对土壤肥力和土壤环境质量的影响研究进展[J]. 生态环境学报, 2016, 25(1): 175 − 181.
    [41] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review[J]. Plant and Soil, 2001, 237(2): 173 − 195. doi: 10.1023/A:1013351617532
    [42] Goh K M, Bruce G E, Sedcole J R. Comparison of biological nitrogen fixation in four pairs of conventional and alternative mixed cropping farms with three rotational stages of pasture establishment in Canterbury, New Zealand[J]. Communications in Soil Science & Plant Analysis, 2001, 32(3-4): 521 − 536.
    [43] Pandey A, Li F, Askegaard M, et al. Biological nitrogen fixation in three long-term organic and conventional arable crop rotation experiments in Denmark[J]. European Journal of Agronomy, 2017, 90: 87 − 95. doi: 10.1016/j.eja.2017.07.009
    [44] Lin H, Huber J A, Gerl G, et al. Nitrogen balances and nitrogen-use efficiency of different organic and conventional farming systems[J]. Nutrient Cycling in Agroecosystems, 2016, 105(1): 1 − 23. doi: 10.1007/s10705-016-9770-5
    [45] Ipata P L, Pesi R. What is the true nitrogenase reaction? A guided approach[J]. Biochemistry and Molecular Biology Education, 2015, 43(3): 142 − 144. doi: 10.1002/bmb.20843
    [46] Shi H W, Wang L Y, Lix X, et al. Genome-wide transcriptome profiling of nitrogen fixation in Paenibacillus sp. WLY78[J]. BMC Microbiology, 2016, 16(1): 1 − 10. doi: 10.1186/s12866-015-0617-z
    [47] Pereg L, Morguán-coronado A, Mcmillan M, et al. Restoration of nitrogen cycling community in grapevine soil by a decade of organic fertilization[J]. Soil & Tillage Research, 2018, 179: 11 − 19.
    [48] Chan Y, Barraquio W L, Knowles R. N2-fixing pseudomonads and related soil bacteria[J]. FEMS Microbiology Reviews, 1994, 13(1): 95 − 118. doi: 10.1111/j.1574-6976.1994.tb00037.x
    [49] Soong J L, Fuchslueger L, Marañon-jimenez S, et al. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling[J]. Global Change Biology, 2020, 26(4): 1953 − 1961. doi: 10.1111/gcb.14962
    [50] 邱晓蕾, 宗良纲, 刘一凡, 等. 不同种植模式对土壤团聚体及有机碳组分的影响[J]. 环境科学, 2015, 36(3): 1045 − 1052.
    [51] Feitosa De Souza T A, Rodrígues A F, Marques L F. The trend of soil chemical properties, and rapeseed productivity under different long-term fertilizations and stubble management in a Ferralsols of Northeastern Brazil[J]. Organic Agriculture, 2017, 7(4): 353 − 363. doi: 10.1007/s13165-016-0164-4
    [52] Li Y, Wu Z, Dong X, et al. Dependency of biological nitrogen fixation on organic carbon in acidic mine tailings under light and dark conditions[J]. Applied Soil Ecology, 2019, 140: 18 − 25. doi: 10.1016/j.apsoil.2019.04.002
    [53] 车荣晓, 邓永翠, 吴伊波, 等. 生物固氮与有效氮的关系:从分子到群落[J]. 生态学杂志, 2017, (1): 226 − 234.
    [54] Rousk J, Bengtson P. The Microbial Regulation of Global Biogeochemical Cycles[M]. Lausanne: Frontiers Media SA, 2014.
    [55] Wang L N, Yu Z, Yang J, et al. Diazotrophic bacterial community variability in a subtropical deep reservoir is correlated with seasonal changes in nitrogen[J]. Environmental Science and Pollution Research, 2015, 22(24): 19695 − 19705. doi: 10.1007/s11356-015-5144-9
    [56] Furina E K, Bonartseva G A, L'vov N P. Effect of various concentrations of oxygen, molybdenum, and nitrate on nitrogen fixation and denitrification in Azospirillum lipoferum[J]. Soil Science Society of America Journal, 1999, 28(4): 50 − 54.
    [57] 柯丹霞, 徐勤朕, 杨 娜, 等. 高氮抑制豆科植物结瘤固氮机制研究进展[J]. 生物技术通报, 2019, 35(10): 40 − 45.
    [58] DREVON R J J. The Phosphorus Requirement of N2-Fixing and Urea-Fed Acacia mangium[J]. New Phytologist, 1996, 132(3): 383 − 390. doi: 10.1111/j.1469-8137.1996.tb01858.x
    [59] Robson R L, Postgate J R. Oxygen and Hydrogen in Biological Nitrogen Fixation[J]. Annual Review of Microbiology, 1955, 34(1): 183 − 207.
    [60] Augusto L, Delerue F, Gallet-budynek A, et al. Global assessment of limitation to symbiotic nitrogen fixation by phosphorus availability in terrestrial ecosystems using a meta-analysis approach[J]. Global Biogeochemical Cycles, 2013, 27(3): 804 − 815. doi: 10.1002/gbc.20069
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  1
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-18
  • 修回日期:  2020-12-05
  • 刊出日期:  2021-06-04

目录

    /

    返回文章
    返回