留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水洗处理对秸秆生物质炭吸附解吸Cd2+和Pb2+的特性影响

来雪慧 王芳丽 张玉薇 赵婉辰 闫彬 吴宏梅

来雪慧, 王芳丽, 张玉薇, 赵婉辰, 闫 彬, 吴宏梅. 水洗处理对秸秆生物质炭吸附解吸Cd2+和Pb2+的特性影响[J]. 土壤通报, 2021, 52(3): 686 − 694 doi: 10.19336/j.cnki.trtb.2020092301
引用本文: 来雪慧, 王芳丽, 张玉薇, 赵婉辰, 闫 彬, 吴宏梅. 水洗处理对秸秆生物质炭吸附解吸Cd2+和Pb2+的特性影响[J]. 土壤通报, 2021, 52(3): 686 − 694 doi: 10.19336/j.cnki.trtb.2020092301
LAI Xue-hui, WANG Fang-li, ZHANG Yu-wei, ZHAO Wan-chen, YAN Bin, WU Hong-mei. Effects of Water Washed Biochar Types Derived from Different Straw Materials on the Adsorption/Desorption of Cd2+ and Pb2+ [J]. Chinese Journal of Soil Science, 2021, 52(3): 686 − 694 doi: 10.19336/j.cnki.trtb.2020092301
Citation: LAI Xue-hui, WANG Fang-li, ZHANG Yu-wei, ZHAO Wan-chen, YAN Bin, WU Hong-mei. Effects of Water Washed Biochar Types Derived from Different Straw Materials on the Adsorption/Desorption of Cd2+ and Pb2+ [J]. Chinese Journal of Soil Science, 2021, 52(3): 686 − 694 doi: 10.19336/j.cnki.trtb.2020092301

水洗处理对秸秆生物质炭吸附解吸Cd2+和Pb2+的特性影响

doi: 10.19336/j.cnki.trtb.2020092301
基金项目: 国家自然科学基金项目(41701562)、山西省高等学校科技创新项目(2019L0917)和太原工业学院第三届青年学科带头人支持计划资助
详细信息
    作者简介:

    来雪慧(1984−),女,山西大同人,博士,副教授,硕导,主要从事农业面源污染及水污染控制。E-mail: laixuehui2010@163.com

  • 中图分类号: X53

Effects of Water Washed Biochar Types Derived from Different Straw Materials on the Adsorption/Desorption of Cd2+ and Pb2+

  • 摘要: 水洗处理在不影响生物质炭性质的前提下,可以去除附着在其表面的热解副产物,从而保证对重金属离子的去除能力。以小麦和玉米秸秆为原料,比较两种秸秆类生物质炭对溶液Cd2+和Pb2+的吸附解吸特点及其水溶性盐分含量的影响。结果表明,小麦和玉米秸秆生物质炭对Cd2+和Pb2+的吸附过程均更好地符合准二级动力学方程和Langmuir方程。小麦秸秆生物质炭对Cd2+和Pb2+的最大吸附量达12.82 mg g−1和9.91 mg g−1,为玉米秸秆吸附量的1.31 ~ 1.76倍和1.06 ~ 1.53倍。洗脱水溶性盐分可以降低生物质炭对Cd2+和Pb2+的吸附,水洗后小麦秸秆和玉米秸秆生物质炭对Cd2+的最大吸附量分别降低42.36%和60.13%,对Pb2+的最大吸附量分别降低29.47%和62.72%。水洗处理提高了两种秸秆生物质炭对Cd2+和Pb2+的解吸率,其中小麦秸秆生物质炭提高幅度较大,由原来对Cd2+的解吸率为1.84% ~ 13.05%提高到7.88% ~ 20.19%,对Pb2+的解吸率为1.57% ~ 11.82%提高到6.34% ~ 16.94%。因此,可溶性盐分在秸秆生物质炭吸附Cd2+和Pb2+的过程中具有重要作用,该研究结果将为制备高效修复重金属污染土壤的生物质材料提供技术支撑。
  • 图  1  不同生物质炭水洗前后对Cd2+和Pb2+的动力学吸附曲线

    Figure  1.  Kinetic adsorption curves of Cd2+ and Pb2+ in different biochar types before and after water washing

    图  2  水洗前后生物质炭不同动力学模型拟合曲线

    Figure  2.  Different dynamic model fitting curves of different biochar types before and after water washing

    图  3  水洗前后不同生物质炭对Cd2+和Pb2+的等温吸附曲线

    Figure  3.  Isothermal adsorption curves of Cd2+ and Pb2+ by different biochar types before and after water washing

    图  4  水洗前后不同生物质炭对Cd2+和Pb2+的等温解吸曲线

    Figure  4.  Isothermal desorption curves of Cd2+ and Pb2+ by different biochar types before and after water washing

    表  1  不同生物质炭的理化性质

    Table  1.   Basic properties of biochar types treated with different methods

    生物质炭
    Biochar
    pH值
    pH value
    有机碳
    Organic carbon
    (g kg-1)
    CEC
    (cmol(+) kg−1
    灰分含量
    Ash content
    (%)
    WSB 10.30 ± 0.19 Aa 555.77 ± 8.15 Bb 74.37 ± 4.46 Ab 21.42 ± 1.22 Aa
    CSB 10.04 ± 0.07 Aa 580.50 ± 12.7 4Ba 76.79 ± 3.52 Aa 18.70 ± 1.29 Aa
    W-WSB 7.41 ± 0.13 Ba 605.20 ± 9.41 Ab 23.94 ± 2.66 Ba 14.14 ± 1.35 Ba
    W-CSB 7.21 ± 0.08 Bb 685.67 ± 10.60 Aa 19.66 ± 2.10 Bb 10.32 ± 1.30 Bb
      注:WSB和CSB分别代表小麦秸秆和玉米秸秆生物质炭;W-WSB和W-CSB分别代表水洗小麦秸秆和水洗玉米秸秆生物质炭;不同大写字母表示同种秸秆生物质炭不同处理之间存在显著差异(P < 0.05);不同小写字母表示同种处理不同秸秆生物质炭之间存在显著差异(P < 0.05)。下同。
    下载: 导出CSV

    表  2  不同生物质炭的比表面积、总孔体积和平均孔径

    Table  2.   The surface area,total pore volume and average pore size of different types of biochar

    生物质炭
    Biochar
    BET比表面积
    BET surface area
    (m2 g−1
    总孔体积
    Total pore volume
    (m2 g−1
    平均孔径
    Average pore size
    (nm)
    WSB 19.79 ± 0.39 Bb 0.0326 ± 0.0010 Ba 5.86 ± 0.11 Aa
    CSB 20.36 ± 0.26 Ba 0.0324 ± 0.0010 Ba 5.32 ± 0.06 Ab
    W-WSB 25.12 ± 0.26 Ab 0.0453 ± 0.0020 Aa 5.22 ± 0.06 Ba
    W-CSB 33.25 ± 0.27 Aa 0.0469 ± 0.0017 Aa 5.18 ± 0.10 Aa
    下载: 导出CSV

    表  3  不同生物质炭水洗前后对Cd2+和Pb2+的吸附动力学拟合参数

    Table  3.   Regression parameter of kinetic equation for the adsorption of Cd2+ and Pb2+ by different biochar types before and after water washing

    生物质炭
    Biochar
    重金属离子
    Heavy metal ion
    准一级动力学模型
    Pseudo-first order kinetic model
    准二级动力学模型
    Pseudo-second order kinetic model
    Web-Morris颗粒内扩散模型
    Web-Morris interior diffusion equation
    Qe
    (mg g−1
    k1
    (min−1
    R2Qe
    (mg g−1
    k2
    (mg g−1 min−1
    R2Kw
    (mg g−1 min−0.5
    R2
    WSB Cd2+ 12.38 0.0385 0.9211 13.87 0.0053 0.9599 0.7073 0.8888
    Pb2+ 10.44 0.0347 0.9472 11.66 0.0067 0.9710 0.6012 0.8929
    CSB Cd2+ 4.00 0.0323 0.9855 7.70 0.0226 0.9939 0.3540 0.9702
    Pb2+ 4.41 0.0238 0.9897 6.90 0.0163 0.9868 0.4194 0.9529
    W-WSB Cd2+ 5.57 0.0268 0.9823 8.17 0.0107 0.9774 0.4259 0.9185
    Pb2+ 5.37 0.0286 0.9676 7.76 0.0096 0.9670 0.4689 0.8801
    W-CSB Cd2+ 1.86 0.0305 0.9263 3.24 0.0318 0.9778 0.1686 0.9539
    Pb2+ 2.55 0.0224 0.8275 2.96 0.0205 0.9380 0.1076 0.9951
    下载: 导出CSV

    表  4  生物质炭对Cd2+和Pb2+的等温吸附拟合参数

    Table  4.   Regression parameters of Langmuir and Freundlich models for the isothermal adsorption of Cd2+ and Pb2+ by different biochar types

    生物质炭
    Biochar
    重金属离子
    Heavy metal ion
    Langmuir方程
    Langmuir isotherm
    Freundlich方程
    Freundlichisotherm
    Qmax
    (mg g−1
    B
    (L mg−1
    R2nKFR2
    WSB Cd2+ 13.62 0.1467 0.9959 0.3154 3.1150 0.7637
    Pb2+ 8.89 0.1011 0.9976 0.3129 1.9517 0.8127
    CSB Cd2+ 11.29 0.1020 0.9954 0.3062 2.5404 0.8639
    Pb2+ 8.31 0.0879 0.9878 0.3138 1.7594 0.8990
    W-WSB Cd2+ 4.76 0.0773 0.9851 0.3879 0.7234 0.8635
    Pb2+ 2.69 0.0751 0.9711 0.4735 0.2871 0.8176
    W-CSB Cd2+ 3.79 0.0756 0.9753 0.4550 0.4359 0.8251
    Pb2+ 2.01 0.0709 0.9771 0.4677 0.2167 0.8390
    下载: 导出CSV

    表  5  不同初始溶液浓度下水洗前后生物质炭对Cd2+和Pb2+的解吸率

    Table  5.   The desorption rate of Cd2+ and Pb2+ with the change of initial concentration by different biochar types before and after water washing

    溶液初始浓度(mg L−1
    Initial solution concentration
    WSB
    (%)
    CSB
    (%)
    W-WSB
    (%)
    W-CSB
    (%)
    Cd2+Pb2+Cd2+Pb2+Cd2+Pb2+Cd2+Pb2+
    5 1.84 1.57 2.43 2.28 7.88 6.34 4.93 4.17
    10 2.76 2.41 2.65 2.34 7.94 6.63 5.25 4.82
    20 3.11 2.82 2.76 2.52 10.83 8.14 9.97 7.36
    40 5.38 4.56 3.09 2.75 14.64 12.03 13.32 11.15
    50 7.80 6.25 3.52 2.99 16.97 13.47 15.71 12.63
    80 10.64 8.07 6.98 4.42 18.83 16.24 16.43 13.49
    100 11.69 10.15 7.87 5.18 19.03 17.16 16.97 14.22
    150 12.94 11.33 8.42 6.27 18.74 17.83 16.33 13.87
    200 13.05 11.82 9.15 6.55 20.19 16.94 19.24 15.25
    下载: 导出CSV
  • [1] 左 静, 陈 德, 郭 虎, 等. 小麦秸秆生物质炭对旱地土壤铅镉有效性及小麦、玉米吸收的影响[J]. 农业环境科学学报, 2017, 36(6): 1133 − 1140. doi: 10.11654/jaes.2016-1655
    [2] 盘丽珍, 许中坚, 伍泽广, 等. 大豆秸秆生物炭对铅锌尾矿污染土壤的修复作用[J]. 水土保持学报, 2018, 32(5): 325 − 329, 334.
    [3] Zhu D Q, Kwon S, Pignatello J J. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions[J]. Environmental Science & Technology, 2005, 39: 3990 − 3998.
    [4] 郭 悦, 唐 伟, 代静玉, 等. 洗脱处理对生物质炭吸附铜离子行为的影响[J]. 农业环境科学学报, 2014, 33(7): 1405 − 1413. doi: 10.11654/jaes.2014.07.022
    [5] 任春燕, 郭 堤, 刘翔宇, 等. 猕猴桃木生物质炭对溶液中Cd2+、Pb2+的吸附及应用研究[J]. 农业环境科学学报, 2019, 38(8): 1982 − 1990. doi: 10.11654/jaes.2019-0012
    [6] 郭琳颖, 王凯男, 王梦寒, 等. 芦苇生物质炭对镉的吸附及机制[J]. 农业资源与环境学报, 2020, 37(1): 66 − 73.
    [7] 袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011, 20(4): 779 − 785. doi: 10.3969/j.issn.1674-5906.2011.04.034
    [8] Chu G, Zhao J, Chen F Y, et al. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation[J]. Environmental Pollution, 2017, 227: 372 − 379. doi: 10.1016/j.envpol.2017.04.067
    [9] 侯建伟, 刑存芳, 邓小梅, 等. 不同作物秸秆加工制成生物质炭的理化性质比较研究[J]. 土壤通报, 2020, 51(1): 130 − 135.
    [10] 周建斌, 张合玲, 叶汉玲, 等. 几种秸秆醋液组分中活性物质的分析[J]. 生物质化学工程, 2009, 43(2): 34 − 43. doi: 10.3969/j.issn.1673-5854.2009.02.008
    [11] Yu K F, Zhu H, Li M Y, et al. Preparation of mesoporous biomass carbon derived from corn stalks and formation mechanism[J]. Chemistry Select, 2017, 27(2): 8239 − 8246.
    [12] 鲍 磊, 白永辉, 李 凡. 生物质炭材料的制备及应用研究进展[J]. 化工新型材料, 2019, 47(7): 54 − 59.
    [13] 刘莹莹, 秦海芝, 李恋卿, 等. 不同作物原料热裂解生物质炭对溶液中Cd2+和Pb2+的吸附特性[J]. 生态环境学报, 2012, 21(1): 146 − 152. doi: 10.3969/j.issn.1674-5906.2012.01.026
    [14] 焦 敏, 宋梦来, 赵熙君, 等. 热裂解温度对生物质炭吸附解吸Cd2+行为的影响[J]. 土壤通报, 2020, 51(3): 717 − 724.
    [15] 王 敏, 解 秋, 卞荣军, 等. 水洗处理对不同原料生物质炭吸附解吸Cd2+行为的影响[J]. 土壤通报, 2018, 49(4): 973 − 979.
    [16] Marco K, Peters N, Mark G J, Et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247 − 1253.
    [17] 耿 勤, 张 平, 廖柏寒, 等. 生物质炭对溶液中Cd2+的吸附[J]. 环境工程学报, 2015, 9(4): 1675 − 1679. doi: 10.12030/j.cjee.20150425
    [18] 陈再明, 方 远, 徐义亮, 等. 水稻秸秆生物炭对重金属Pb2+的吸附作用及影响因素[J]. 环境科学学报, 2012, 32(4): 769 − 776.
    [19] 钟倩倩, 赵雅琴, 吴爱兵, 等. 微波活化稻壳基生物质材料对亚甲基蓝的吸附性能[J]. 过程工程学报, 2018, 18(6): 1210 − 1218. doi: 10.12034/j.issn.1009-606X.218125
    [20] Gűműs D. Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal[J]. International Journal of Phytoremediation, 2019, 21(6): 556 − 563. doi: 10.1080/15226514.2018.1537254
    [21] 魏啸楠, 张 倩, 李 孟, 等. 磷酸改性生物炭负载硫化锰去除废水中重金属镉[J]. 中国环境科学, 2020, 40(5): 2095 − 2102. doi: 10.3969/j.issn.1000-6923.2020.05.028
    [22] 温尔刚, 赵伟宁, 杨 兴, 等. 发过梧桐叶片炭和枝条炭对水中Pb2+的吸附特征影响[J]. 水土保持学报, 2019, 33(2): 309 − 316.
    [23] 徐义亮. 生物碳的制备热动力学特性及其对镉的吸附性能和机理[D]. 浙江大学, 2013.
    [24] 胡世民, 陈效民, 景 峰, 等. 添加生物质炭对红壤性水稻土Cd2+吸附解吸特性的影响[J]. 水土保持学报, 2020, 34(2): 360 − 364, 371.
    [25] Cui L Q, Pan G X, Li L Q, et al. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: a five-year field experiment[J]. Ecological Engineering, 2016, 93: 1 − 8. doi: 10.1016/j.ecoleng.2016.05.007
    [26] 胡雪芳, 田志清, 梁 亮, 等. 不同改良剂对铅镉污染农田水稻重金属积累和产量影响的比较分析[J]. 环境科学, 2018, 39(7): 3409 − 3417.
    [27] Chen D, Li R, Bian R, et al. Contribution of soluble minerals in biochar to Pb2+ adsorption in aqueous solutions[J]. Bioresources, 2017, 12(1): 1662 − 1679.
    [28] Xu X, Cao X, Zhao L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science & Pollution Research, 2013, 20(1): 358 − 368.
    [29] 戴 静, 刘阳生. 四种原料热解产生的生物炭对Pb2+和Cd2+的吸附特性研究[J]. 北京大学学报(自然科学版), 2013, 49(6): 1075 − 1082.
    [30] 李 力, 陆宇超, 刘 娅, 等. 玉米秸秆生物炭对Cd2+的吸附机理研究[J]. 农业环境科学学报, 2012, 31(11): 2277 − 2283.
    [31] 李瑞月, 陈 德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中Pb2+、Cd2+的吸附[J]. 农业环境科学学报, 2015, 34(5): 1001 − 1008. doi: 10.11654/jaes.2015.05.025
    [32] Xu R, Xiao S, Zhao A, et al. Effect of Cr(Ⅳ) anions on adsorption and desorption behavior of Cu(Ⅱ) in the colloidal systems of two authentic variable charge soils[J]. Journal of Colloid & Interface Science, 2005, 284(1): 22.
    [33] 章绍康, 弓晓峰, 申钊颖, 等. 改性凹凸棒土堆土壤中Cd2+吸附解吸及钝化效果影响[J]. 环境工程, 2019, 37(3): 192 − 197.
    [34] 叶碧莹, 柏宏成, 刘高云, 等. 天然有机质不同分子量组分对紫色土镉吸附-解吸的影响[J]. 农业环境科学学报, 2019, 38(8): 1963 − 1972. doi: 10.11654/jaes.2018-1578
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  133
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-23
  • 修回日期:  2021-01-04
  • 刊出日期:  2021-06-04

目录

    /

    返回文章
    返回