留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁氧化物固定土壤重金属的研究进展

杨忠兰 曾希柏 孙本华 苏世鸣 王亚男 张楠 张洋 吴翠霞

杨忠兰, 曾希柏, 孙本华, 苏世鸣, 王亚男, 张 楠, 张 洋, 吴翠霞. 铁氧化物固定土壤重金属的研究进展[J]. 土壤通报, 2021, 52(3): 728 − 735 doi: 10.19336/j.cnki.trtb.2020102801
引用本文: 杨忠兰, 曾希柏, 孙本华, 苏世鸣, 王亚男, 张 楠, 张 洋, 吴翠霞. 铁氧化物固定土壤重金属的研究进展[J]. 土壤通报, 2021, 52(3): 728 − 735 doi: 10.19336/j.cnki.trtb.2020102801
YANG Zhong-lan, ZENG Xi-bai, SUN Ben-hua, SU Shi-ming, WANG Ya-nan, ZHANG Nan, ZHANG Yang, WU Cui-xia. Research Advances on the Fixation of Soil Heavy Metals by Iron Oxide[J]. Chinese Journal of Soil Science, 2021, 52(3): 728 − 735 doi: 10.19336/j.cnki.trtb.2020102801
Citation: YANG Zhong-lan, ZENG Xi-bai, SUN Ben-hua, SU Shi-ming, WANG Ya-nan, ZHANG Nan, ZHANG Yang, WU Cui-xia. Research Advances on the Fixation of Soil Heavy Metals by Iron Oxide[J]. Chinese Journal of Soil Science, 2021, 52(3): 728 − 735 doi: 10.19336/j.cnki.trtb.2020102801

铁氧化物固定土壤重金属的研究进展

doi: 10.19336/j.cnki.trtb.2020102801
基金项目: 国家自然科学基金区域创新发展联合基金项目(U19A2048)、国家自然科学面上基金(41671308)和中国农业科学院科技创新工程专项(CAAS-ASTIP-2016-IEDA)资助
详细信息
    作者简介:

    杨忠兰(1989−),女,山东烟台人,博士研究生,主要从事农业环境污染修复研究。E-mail: zhonglanyang@163.com

    通讯作者:

    E-mail: zengxibai@caas.cn

  • 中图分类号: S147.2

Research Advances on the Fixation of Soil Heavy Metals by Iron Oxide

  • 摘要: 铁氧化物及其前体在重金属污染土壤的原位修复方面已得到广泛应用,它既可单独使用亦可与其他钝化剂联用。尽管应用铁氧化物修复重金属污染土壤取得了部分成功,但对长期、大规模应用的效果及其稳定性等,目前尚缺乏统一的认识。在对铁氧化物修复重金属污染土壤研究结果进行归纳总结的基础上,探讨了植物和微生物对铁氧化物稳定砷效果的影响,旨在为污染土壤修复提供理论支撑。
  • 表  1  常见铁氧化物的类型

    Table  1.   Common types of iron oxides

    氧化铁
    Iron oxide
    水合羟基氧化铁
    Hydrated iron oxyhydroxide
    化学式
    Chemical formula
    铁氧化物
    Iron oxide
    化学式
    Chemical formula
    铁氧化物
    Iron oxide
    β-Fe2O3 β-Fe2O3 Fe5HO8·4 H2O 水铁矿
    ε-Fe2O3 ε-Fe2O3 α-FeOOH 针铁矿
    FeO 方铁矿 γ-FeOOH 纤铁矿
    Fe3O4 磁铁矿 β-FeOOH 四方纤铁矿
    γ-Fe3O4 磁赤铁矿 δ′-FeOOH(结晶度低) 六方纤铁矿
    α-Fe2O3 赤铁矿 δ-FeOOH(结晶度高) 六方纤铁矿
    Fe16O16(OH)y(SO4z·n H2O 施氏矿物
    Fe(OH)3 纳伯尔矿
    FexIIIFeYII(OH)3X + 2y − Z(Az(A = Cl;1/2CO32−;1/2SO42− 绿绣
    下载: 导出CSV

    表  2  研究矿物结构的现代分析技术

    Table  2.   Modern analytical techniques for studying mineral structure

    现代分析技术
    Modern analytical technique
    测试原理
    Test principle
    应用领域
    Application field
    与其他技术联用
    Combine with other technologies
    局限
    Limitation
    X射线衍射分析(XRD) 利用X射线在晶体中衍射后的信号 检测氧化物的晶体结构和结晶度 辅以其他技术以研究元素的氧化还原状态或结合机制 检测限约5 wt.%
    扫描电子显微镜(SEM)、场发射扫描电镜(FESEM) 入射电子束轰击样品表面,激发特征信号,转化为数字信号 > 1µm颗粒的可视化,能获得固体形貌或化学成分 与能谱(EDS)耦合得到样品的半定量化学成分;与波长色散光谱仪(WDS)的电子探针微量分析(EPMA)联用,可以定性氧化物组成 抛光标本或制成薄片,对土壤体系的应用有限
    透射电子显微镜(TEM)、高分辨率TEM(HRTEM)、球差校正扫描透射电子显微镜(Cs-STEM) 波长极短的电子束作为光源,经电磁透镜聚焦成一束近似平行的光线穿透样品后被成像系统的电磁透镜放大 用于纳米至原子尺度形貌和化学反应观察、缺陷分析及结构测定;追踪有机质-铁矿物-重金属的动态反应
    过程
    分别与选定区域电子衍射(SAED)、EDS及电子能量损失光谱(EELS)耦合获得晶体信息、化学数据及元素的氧化还原状态 点对点分辨率 < 0.1 nm
    57Fe穆斯堡尔光谱 应用57Fe原子核γ射线的无反冲发射及共振吸收效应,探测共振原子核附近的物理化学环境 得到电荷和配位信息
    傅里叶变换红外光谱(FITR) 根据原子间的相对振动和分子转动等确定分子结构 研究金属氧化物表面的有机及无机官能团与结合物的键合方式及强度 利用漫反射红外光谱法测定透射比弱的样品;利用衰减全反射傅里叶变换红外光谱(ATR-FTIR)技术原位测定表面形态;傅立叶变换离子回旋共振质谱技术(FT-ICR-MS)研究分子层次上DOM与重金属的反应特性
    X射线光电子能谱(XPS) 单色射线照射样品后激发原子或分子的电子,而测定能量分布 研究矿物表面的化学成分、状态及与重金属的结合方式
    X射线吸收精细结构光谱(XAFS)、X射线吸收近边结构光谱(XANES)、扩展X射线吸收精细结构光谱(EXAFS) 基于同步辐射的分析方法 获得原子配位的种类、数量和距离等结构信息反映吸收原子的立体配位环境、氧化态和对称性、配体电负性等信息; 在主成分分析的基础上,借助XAFS谱的线性拟合分析(LCF),揭示不同价态污染物的赋存形式。复杂多相体系环境中的目标元素,需要借助同步辐射微区技术如μ-XRF和μ-XAFS
    原子配对分布函数(PDF) 基于高能X射线总散射技术,包含了布拉格衍射和漫散射贡献 反映样品中各个原子对的键长分布,获取样品的结构
    信息
    下载: 导出CSV

    表  3  利用铁氧化物稳定化处理As及复合污染土壤的研究实例

    Table  3.   Examples dealing with As and stabilization in contaminated soils using various oxides and their precursors

    重金属浓度(mg kg−1
    Metal Concentrations
    处理方法(wt.%)
    Treatment
    影响
    Effect
    As(30 ~ 68)、Cd(5 ~ 34)、Cu(58 ~ 95)、Pb(913 ~ 8306)、Zn(500 ~ 2039)[42] 水铁矿(2%);针铁矿(2%);赤泥(0.25%,0.5%) 降低大麦对As,Cd和Pb的吸收;增强Cd,Cu,Pb,Zn的固定;增加土壤pH和活化As的风险
    As(60 ~ 78)、Cd(1 ~ 36)、Cu(69 ~ 118)、Pb(127 ~ 360)、Zn(33 ~ 508)[28, 34] 硫酸亚铁(1%)+ 石灰;硫酸铁(1%)+ 石灰;针铁矿(1%);Fe(0)(1%) 所有处理均降低渗漏液中As的浓度;硫酸铁增加渗漏液中Cd,Cu,Pb和Zn的浓度;去除效率遵循硫酸铁 > 硫酸亚铁 > Fe(0) $\gg $ 针铁矿;可交换态As降低,转变成不稳定态As;针铁矿的应用促进了黑麦草、番茄和菠菜的生长;降低黑麦草、番茄和菠菜对As的吸收
    As(75 ~ 560)[43] 水铁矿(0.1%,1%) 0.1%比例条件下,非稳态As浓度下降59% ~ 76%;水铁矿添加150 d,弱结晶态铁氧化物结合态As含量增加
    As(115 ~ 14200)[34] Fe(0)(1%) 土壤溶液中As浓度降低了39% ~ 95%
    As(145)[8] 氢氧化铁(5%) As的浸出率降低50%
    As(147.4 ~ 189.4)[44] 羧甲基纤维素钠(0.05%,0.1%,0.5%);水铁矿(0.05%,0.1%,0.5%) 土壤As的稳定效率达70.9%;有效态As含量降低了40% ~ 52.9%;降低小油菜地上部As含量(31% ~ 61%);植物的生物量没有明显变化
    As(169)[2] Fe(0)(1%)+ 棕闪粗面岩(5%) 降低可交换态As浓度;促进生菜、卷心菜和豌豆的生长;降低As的生物有效性和蚯蚓的生物利用度;微生物量增加,但微生物的物种丰富度没有增加
    As(179)、Cd(6)、Zn(3127)、Pb(3564)[45] 铁氧化物(1%,3%) 降低孔隙水中As的浓度,但对Cd,Cu,Pb和 Zn影响不大;对生菜种子的萌发和根系生长影响不显著;
    As(577)[27] 硫酸亚铁(0.2% ~ 1.1%)+ 石灰 降低生菜中As的浓度,例如添加1.1%的硫酸亚铁时从13.87 µg L−1降低到1.45 µg L−1;植物的生物量没有明显变化
    As(748)[27] 硫酸亚铁 + 石灰(含有0.2% ~ 2%的铁氧化物);Fe(0)(0.2%的铁氧化物) 硫酸亚铁的存在(0.5%和1%的铁氧化物)降低植物对As的吸收(平均降低了32%);Fe(0)不能降低植物对As的吸收;
    As(683 ~ 4814)[46] 硫酸亚铁 + 石灰(Fe/As摩尔比1-50) 明显降低水中溶解态As,例如Fe∶As = 2,从3790 µg L−1降到0.79 µg L−1;未加石灰时,造成pH降低,活化Cu和Zn
    As(1033)、Cr(371)[47] 水铁矿(2.5%,5%) 降低As的浸出率(98%);降低孔隙水中As的浓度
    As(1215 ~ 1327)[48] 水铁矿(1% ~ 5%);褐铁矿(1% ~ 10%) 明显降低水中溶解态As(55% ~ 100%)
    As(1325)[2] Fe(0)(1%)+ 堆肥(5%)+ 棕闪粗面岩(5%) 长期利于松树的生长;降低地上部植物中As的含量;降低As的渗漏;土壤处理后可以重新种植植物
    As(1457)[49] Fe(0)(2%)+ 堆肥(5%)+ 棕闪粗面岩(5%) 长期浸出试验(10年)降低总As的浓度;降低可交换态As的组分,且该组分与弱结晶态铁氧化物的含量有关
    As(5904)、Cr(3829)、
    Cu(1509)[50]
    Fe(0)(1%) 分别降低了渗漏液(98%)、土壤孔隙水(99%)和植物根系(84%)中As的浓度
    下载: 导出CSV
  • [1] Bompoti N, Chrysochoou M, Machesky M. Surface structure of ferrihydrite: Insights from modeling surface charge[J]. Chemical Geology, 2017, 464: 34 − 45. doi: 10.1016/j.chemgeo.2016.12.018
    [2] Mench M, Lepp N, Bert V, et al. Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859[J]. Journal of Soils & Sediments, 2010, 10(6): 1039 − 1070.
    [3] Puschenreiter M, Horak O, Friesl W, et al. Low-cost agricultural measures to reduce heavy metal transfer into the food chain - a review[J]. Plant Soil & Environment, 2005, 51(1): 1 − 11.
    [4] Vangronsveld J, Herzig R, Weyens N, et al. Phytoremediation of contaminated soils and groundwater: lessons from the field[J]. Environmental Science & Pollution Research, 2009, 16(7): 765 − 794.
    [5] Kumpiene J, Fitts J P, Mench M. Arsenic fractionation in mine spoils 10 years after aided phytostabilization[J]. Environmental Pollution, 2012, 166(7): 82 − 88.
    [6] Adriano D C, Wenzel W W, Vangronsveld J, et al. Role of assisted natural remediation in environmental cleanup[J]. Geoderma, 2004, 122(2): 121 − 142.
    [7] Marques A P G C, Rangel A O S S, Castro P M L. Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology[J]. Critical Reviews in Environmental Science & Technology, 2009, 39(8): 622 − 654.
    [8] Ko M S, Kim J Y, Bang S B, et al. Stabilization of the As-contaminated soil from the metal mining areas in Korea[J]. Environmental Geochemistry & Health, 2012, 34: 143 − 149.
    [9] Zhang D N, Cao R, Wang S F, et al. Fate of arsenic during up to 4.5 years of aging of Fe-As coprecipitates at acidic pH: Effect of reaction media (Nitrate vs. Sulfate), Fe/As molar ratio, and pH[J]. Chemical Engineering Journal, 2020, 388(15): 124 − 239.
    [10] Cornell R M, Schwertmann U. Influence of organic anions on the crystallization of ferrihydrite[J]. Clays and Clay Minerals, 1979, 27(6): 402 − 410. doi: 10.1346/CCMN.1979.0270602
    [11] Cornell R M, Schwertmann U. The iron oxides. structure, properties, reactions, occurrence and uses[M]. VCH Publishers, Weinheim, Germany, 1996.
    [12] Essington M E, Soil and water chemistry: an integrative approach[M]. CRC Press, Boca Raton, Florida, USA, 2004.
    [13] 李学垣, 土壤化学[M], 北京: 高等教育出版社, 2001.
    [14] Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils to mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141 − 166. doi: 10.1016/j.jhazmat.2013.12.018
    [15] Wang X M, Zhu M Q, Lan S, et al. Formation and secondary mineralization of ferrihydrite in the presence of silicate and Mn(Ⅱ)[J]. Chemical Geology, 2015, 415: 37 − 46. doi: 10.1016/j.chemgeo.2015.09.009
    [16] 李芳柏, 徐仁扣, 谭文锋, 等. 新时代土壤化学前沿进展与展望[J]. 土壤学报, 2020, 57(5): 1088 − 1140. doi: 10.11766/trxb202003080103
    [17] Manceau A, Lanson B, Drits V A, et al. Structure of heavy metal sorbed birnessite. Part III: results from powder and polarized extended X-ray absorption fine structure spectroscopy[J]. Geochimica et Cosmochimica Acta, 2002, 66: 2639 − 2663. doi: 10.1016/S0016-7037(02)00869-4
    [18] 杨忠兰, 曾希柏, 孙本华, 等. 水铁矿结构稳定性及对砷固定研究与展望[J]. 农业环境科学学报, 2020, 39(3): 445 − 453. doi: 10.11654/jaes.2019-1167
    [19] Zhu J, Pigna M, Cozzolino V, et al. Sorption of arsenite and arsenate on ferrihydrite: effect of organic and inorganic ligands[J]. Journal of Hazardous Materials, 2011, 189(1-2): 564 − 571. doi: 10.1016/j.jhazmat.2011.02.071
    [20] Komarek M, Vanek A, Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides - a review[J]. Environmental Pollution, 2013, 172: 9 − 22. doi: 10.1016/j.envpol.2012.07.045
    [21] Violante A, Ricciardella M, Pigna M. Adsorption of heavy metals on mixed Fe-Al oxides in the absence or presence of organic ligands[J]. Water Air & Soil Pollution, 2003, 145(1/4): 289 − 306.
    [22] Pigna M, Cozzolino V, Violante A, et al. Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations[J]. Water Air & Soil Pollution, 2009, 197(1-4): 371 − 380.
    [23] Lei M, Wan X M, Huang Z C, et al. First evidence on different transportation modes of arsenic and phosphorus in arsenic hyperaccumulator Pteris vittata[J]. Environment. Pollution, 2012, 161: 1 − 7. doi: 10.1016/j.envpol.2011.09.017
    [24] Bolan N, Mahimairaja S, Kunhikrishnan A, et al. Bioavailability and ecotoxicity of arsenic species in solution culture and soil system: implications to remediation[J]. Environmental Science & Pollution Research, 2015, 22(12): 8866 − 8875.
    [25] Drahota P, Filippi M. Secondary arsenic minerals in the environment: a review[J]. Environment International, 2009, 35(8): 1243 − 1255. doi: 10.1016/j.envint.2009.07.004
    [26] 赵云青, 周 怡, 黄兴洁, 等. 重金属在矿区土壤-蔬菜系统的吸收与迁移特性研究[J]. 土壤通报, 2019, 50(5): 1233 − 1238.
    [27] Warren G P, Alloway B J, Lepp N W, et al. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides[J]. Science of the Total Environment, 2003, 311(1-3): 19 − 33. doi: 10.1016/S0048-9697(03)00096-2
    [28] Hartley W, Lepp N W. Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake[J]. Science of the Total Environment, 2008, 390(1): 35 − 44. doi: 10.1016/j.scitotenv.2007.09.021
    [29] Waychunas G A, Kim C S, Banfield J F. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms[J]. Journal of Nanoparticle Research, 2005, 7(4): 409 − 433.
    [30] Tjisse H. Ferrihydrite interaction with silicate and competing oxyanions: geometry and hydrogen bonding of surface species[J]. Geochimica et Cosmochimica Acta, 2018, 238: 453 − 476. doi: 10.1016/j.gca.2018.07.017
    [31] Filimonova S, Kaufhold S, Wagner F E, et al. The role of allophane nano-structure and Fe oxide speciation for hosting soil organic matter in an allophanic andosol[J]. Geochimica et Cosmochimica Acta, 2016, 180: 284 − 302. doi: 10.1016/j.gca.2016.02.033
    [32] Kim K R, Lee B T, Kim K W. Arsenic stabilization in mine tailings using nano-sized magnetite and zero valent iron with the enhancement of mobility by surface coating[J]. Journal of Geochemical Exploration, 2012, 113: 124 − 129. doi: 10.1016/j.gexplo.2011.07.002
    [33] Hanauer T, Felix-henningsen P, Steffens D, et al. In situ stabilization of metals (Cu, Cd, and Zn) in contaminated soils in the region of Bolnisi, Georgia[J]. Plant & Soil, 2011, 341: 193 − 208.
    [34] Hartley W, Edwards R, Lepp N W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests[J]. Environmental Pollution, 2004, 131(3): 495 − 504. doi: 10.1016/j.envpol.2004.02.017
    [35] Mueller N C, Nowack B. Nanoparticles for remediation: solving big problems with little particles[J]. Elements, 2010, 6(6): 395 − 400. doi: 10.2113/gselements.6.6.395
    [36] Gray C W, Dunham S J, Dennis P G, et al. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud[J]. Environmental Pollution, 2006, 142(3): 530 − 539. doi: 10.1016/j.envpol.2005.10.017
    [37] Zhang G, Zhang D, Yuan Z, et al. Fate of adsorbed arsenic during early stage sulfidization of nano-ferrihydrite[J]. Environmental Science: Nano, 2019, 6: 2289 − 2240.
    [38] Lombi E, Zhao F J, Zhan G, et al. In situ fixation of metals in soils using bauxite residue: chemical assessment[J]. Environmental Pollution, 2002, 118(3): 445 − 452. doi: 10.1016/S0269-7491(01)00295-0
    [39] Martínez C E, Mcbride M B. Coprecipitates of Cd, Cu, Pb and Zn in iron oxides: solid phase transformation and metal solubility after aging and thermal treatment[J]. Clays & Clay Minerals, 1998, 46(5): 537 − 545.
    [40] Jain A, Raven K P, Loeppert R H. Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH - release stoichiometry[J]. Environmental Science & Technology, 1999, 33(8): 1179 − 1184.
    [41] 刘承帅, 李芳柏, 陈曼佳, 等. Fe(Ⅱ)催化水铁矿晶相转变过程中Pb的吸附与固定[J]. 化学学报, 2017, 75(6): 621 − 628.
    [42] Friesl W, Friedl J, Platzer K, et al. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments[J]. Environmental Pollution, 2006, 144: 40 − 50. doi: 10.1016/j.envpol.2006.01.012
    [43] Zhang T, Zeng X B, Zhang H, et al. Investigation of synthetic ferrihydrite transformation in soils using two-step sequential extraction and the diffusive gradients in thin films (DGT) technique[J]. Geoderma, 2018, 321: 90 − 99. doi: 10.1016/j.geoderma.2018.01.034
    [44] Huo L J, Zeng X, Su S M, et al. Enhanced removal of As(V) from aqueous solution using modified hydrous ferric oxide nanoparticles[J]. Scientific Reports, 2017, 7: 40765. doi: 10.1038/srep40765
    [45] González V, García I, Moral F D, et al. Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal–arsenic polluted soil[J]. Journal of Hazardous Materials, 2012, 205-206: 72 − 80. doi: 10.1016/j.jhazmat.2011.12.011
    [46] Moore T J, Rightmire C M, Vemoati P K. Ferrous iron treatment of soils contaminated with arsenic-containing wood-preserving solution[J]. Journal of Soil Contamination, 2000, 9(4): 375 − 405. doi: 10.1080/10588330091134310
    [47] Nielsen S S, Petersen L R, Kjeldsen P, et al. Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment[J]. Chemosphere, 2011, 84(4): 383 − 389. doi: 10.1016/j.chemosphere.2011.03.069
    [48] García-Sanchez A, Alvarez-Ayuso E, Rodriguez-Martin F. Sorption of As(Ⅴ) by some oxyhydroxides and clay minerals. Application to its immobilization in two polluted mining soils[J]. Clay Minerals, 2002, 37(1): 187 − 194. doi: 10.1180/0009855023710027
    [49] Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-a review[J]. Waste Management, 2008, 28(1): 215 − 225. doi: 10.1016/j.wasman.2006.12.012
    [50] Kumpiene J, Ore S, Renella G, et al. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil[J]. Environmental Pollution, 2006, 144(1): 62 − 69. doi: 10.1016/j.envpol.2006.01.010
    [51] Vangronsveld J, Van Assche F, Clijsters H. Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation[J]. Environmental Pollution, 1995, 87(1): 51 − 59. doi: 10.1016/S0269-7491(99)80007-4
    [52] Perez-De-Mora A, Madejon P, Burgos P, et al. Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: sustainability and risks[J]. Environmental Pollution, 2011, 159(10): 3018 − 3027. doi: 10.1016/j.envpol.2011.04.015
    [53] 陈保冬, 赵方杰, 张 莘, 等. 土壤生物与土壤污染研究前沿与展望[J]. 生态学报, 2015, 35(20): 6604 − 6613.
    [54] Hettiarachchi G M, Pierzynski G M. In situ stabilization of soil lead using phosphorus and manganese oxide: influence of plant growth[J]. Journal of Environmental Quality, 2002, 31(2): 564 − 572.
    [55] Chen H M, Zheng C R, Tu C, et al. Chemical methods and phytoremediation of soil contaminated with heavy metals[J]. Chemosphere, 2000, 41(1): 229 − 234.
    [56] Vanek A, Komarek M, Vokurkova P, et al. Effect of illite and birnessite on thallium retention and bioavailability in contaminated soils[J]. Journal of Hazardous Materials, 2011, 191(1-3): 170 − 176. doi: 10.1016/j.jhazmat.2011.04.065
    [57] Marchand L, Mench M, Marchand C, et al. Phytotoxicity testing of lysimeter leachates from aided phytostabilized Cu-contaminated soils using duckweed (Lemna minor L.)[J]. Science of the Total Environment, 2011, 410: 146 − 153.
    [58] Lee S H, Park H, Koo N, et al. Evaluation of the effectiveness of various amendments on trace metals stabilization by chemical and biological methods[J]. Journal of Hazardous Materials, 2011, 188(1-3): 44 − 51. doi: 10.1016/j.jhazmat.2011.01.046
  • 加载中
计量
  • 文章访问数:  10
  • HTML全文浏览量:  1
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-28
  • 修回日期:  2021-01-14
  • 刊出日期:  2021-06-04

目录

    /

    返回文章
    返回