Effects of Four Fertilization Regimes on Soil Organic Carbon Fractions and Carbon Pool Management Index of Potato Farmland
-
摘要: 针对马铃薯生产实践中长期单施化肥或化肥过量施用等不合理施肥措施导致土壤碳库活性变差和土壤生物活性降低等问题。通过田间定位试验,分析不同施肥方式:不施肥(CK)、单施化肥(NPK)、单施有机肥(M)、有机无机肥配施(NPKM)对旱作马铃薯农田土壤有机碳组分和碳库管理指数的影响。结果显示,连续施肥5年后添加有机肥的M、NPKM处理较CK和NPK处理显著提高了土壤闭蓄态颗粒有机碳(OPOC)和土壤颗粒态有机碳(POC)含量,降低了土壤矿质结合态有机碳(MOC)含量。与CK和NPK处理相比,M、NPKM处理闭蓄态颗粒有机碳(OPOC)含量分别提高了32.52%、30.39%和27.09%、24.78%;土壤颗粒态有机碳(POC)含量分别提高了31.52%、29.65%和25.18%、23.15%。添加有机肥的M和NPKM处理显著提高了颗粒态有机碳(POC)的比例,降低了MOC的比例,与CK和NPK相比,M、MNPK处理中POC的比例分别增加了27.72%、25.23%和10.61%、7.54%,MOC的比例分别降低39.42%、33.16%和14.97%、9.81%。添加有机肥显著提高了土壤总有机碳(TOC)、微生物量碳(MBC)、易氧化有机碳(ROC)的含量,与CK处理相比,M和NPKM处理的TOC分别增加了15.28%和13.64%,MBC增加了21.82%和19.17%,ROC的含量分别增加了32.45%和31.35%;施用有机肥和有机无机配施均显著提高碳库管理指数(CPMI)较单施化肥分别提高28.8%和35.65%。综上所述,施用有机肥处理(M处理和MNPK处理)显著地提高了马铃薯农田土壤闭蓄态颗粒有机碳(OPOC)、颗粒态有机碳(POC)和总有机碳(TOC)及微生物量碳(MBC)、易氧化有机碳(ROC)含量,提高了土壤碳库管理指数;即马铃薯栽培施用有机肥有利于土壤活性有机碳的积累、能够改变土壤有机碳组分分布特征。Abstract: In the potato production practice, long-term single application of chemical fertilizers or excessive application of chemical fertilizers, and other unreasonable fertilization measures lead to the deterioration of soil carbon pool activity and the reduction of soil biological activity. Based on the field experiments, different fertilization methods for 5 consecutive years, such as no fertilization (CK), single application of chemical fertilizer (NPK), single application of organic fertilizer (M), combined application of organic and inorganic fertilizers (NPKM), were applied in the potato farmland to investigate their influences on soil organic carbon composition and carbon pool management index. The results showed that the M and NPKM treatments significantly increased the contents of soil occluded particulate organic carbon (OPOC) and soil particulate organic carbon (POC), and reduced soil mineral-associated organic carbon (MOC) content, compared with CK and NPK treatments. Compared with CK and NPK treatments, the OPOC contents in M and NPKM treatments increased by 32.52% and 30.39%, and 27.09% and 24.78%, respectively. The content of particulate organic carbon (POC) increased by 31.52% and 29.65%, and 25.18% and 23.15%, respectively. The addition of organic fertilizer significantly increased the content of total soil organic carbon (TOC), microbial biomass carbon (MBC), and readily oxidized organic carbon (ROC), compared with CK and NPK treatments, showing TOC in M and NPKM treatments increased by 15.28% and 13.64%, MBC increased by 21.82% and 19.17%, and ROC content increased by 32.45% and 31.35%, respectively. Moreover, the applications of organic fertilizer, and organic combined inorganic fertilizer significantly increased the carbon pool management index (CPMI) by 28.8% and 35.65%, respectively, compared with single application of chemical fertilizer. In summary, the application of organic fertilizer in the potato farmland soil was beneficial to the accumulation of soil active organic carbon and could change the distribution characteristics of soil organic carbon components.
-
表 1 不同施肥方式中土壤颗粒有机碳组分占总有机碳的比例
Table 1. The ratio of soil particulate organic carbon to total organic carbon under different fertilization treatments
处理
Treatment颗粒有机碳/总有机碳
POC/TOC矿质结合态有机碳/总有机碳
MOC/TOC颗粒有机碳/矿质结合态有机碳
POC/MOCCK 42.45 ± 3.35 b 57.54 ± 4.84 a 0.80 ± 0.03 b NPK 52.50 ± 2.19 ab 47.45 ± 2.19 ab 1.16 ± 0.04 ab M 58.73 ± 2.20 a 41.27 ± 2.20 b 1.43 ± 0.05 a NPKM 56.78 ± 4.37 a 43.21 ± 5.36 b 1.39 ± 0.22 a 注:表中数据为平均值 ± 标准误;不同小写字母表示不同处理达到5%显著差异水平。下同。 表 2 不同施肥方式对土壤活性有机碳组分比例和土壤碳库管理指数的影响
Table 2. Effects of different fertilization methods on the ratios of soil active organic carbon components and soil carbon pool management index
处理
Treatment可溶性有机碳/总有机碳
DOC/TOC
(%)微生物量碳/总有机碳
MBC/TOC
(%)易氧化有机碳/总有机碳
ROC/TOC
(%)碳库活度
A碳库活度指数
AI碳库指数
CPI碳库管理指数
CPMICK 1.61 ± 0.05 a 1.76 ± 0.04 b 25.71 ± 1.31 c 0.36 ± 0.01 c 1.00 ± 0.00 c 1.00 ± 0.00 b 100.00 ± 0.00 b NPK 1.64 ± 0.03 a 1.70 ± 0.21 b 27.24 ± 2.05 bc 0.37 ± 0.01 c 1.10 ± 0.06 c 1.03 ± 0.01 b 112.07 ± 1.82 b M 1.47 ± 0.03 b 1.99 ± 0.18 a 35.04 ± 2.25 ab 0.47 ± 0.01 b 1.35 ± 0.04 b 1.16 ± 0.01 a 156.88 ± 5.79 a NPKM 1.42 ± 0.05 b 1.96 ± 0.14 a 38.69 ± 4.33 a 0.53 ± 0.01 a 1.52 ± 0.03 a 1.13 ± 0.02 a 174.44 ± 7.43 a -
[1] 张智起, 张立旭, 徐 炜, 等. 气候变暖背景下土壤呼吸研究的几个重要问题[J]. 草业学报, 2019, 28(9): 164 − 173. doi: 10.11686/cyxb2018547 [2] 俄胜哲, 丁宁平, 李利利, 等. 长期施肥条件下黄土高原黑垆土作物产量与土壤碳氮的关系[J]. 应用生态学报, 2018, 29(12): 4047 − 4055. [3] 梁 尧, 韩晓增, 丁雪丽. 东北黑土有机质组分与结构的研究进展[J]. 土壤, 2012, 44(6): 888 − 897. doi: 10.3969/j.issn.0253-9829.2012.06.002 [4] 赵 鑫, 宇万太, 李建东, 等. 不同经营管理条件下土壤有机碳及其组分研究进展[J]. 应用生态学报, 2006, (11): 2203 − 2209. doi: 10.3321/j.issn:1001-9332.2006.11.040 [5] 张丽敏, 徐明岗, 娄翼来, 等. 土壤有机碳分组方法概述[J]. 中国土壤与肥料, 2014, (4): 1 − 6. doi: 10.11838/sfsc.20140401 [6] Golchin A, Oades J M, Skjemstad J O, et al. Study of free and occluded particulate organic matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy[J]. Soil Research, 1994, 32(2): 285 − 309. doi: 10.1071/SR9940285 [7] 王朔林, 王改兰, 赵 旭, 等. 长期施肥对栗褐土有机碳含量及其组分的影响[J]. 植物营养与肥料学报, 2015, 21(1): 104 − 111. doi: 10.11674/zwyf.2015.0111 [8] 汪景宽, 徐英德, 丁凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展[J]. 土壤学报, 2019, 56(3): 528 − 540. doi: 10.11766/trxb201811140559 [9] 沈 宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, 1999, (3): 33 − 39. [10] 石丽红, 李 超, 唐海明, 等. 长期不同施肥措施对双季稻田土壤活性有机碳组分和水解酶活性的影响[J]. 应用生态学报, 2021, 32(3): 1 − 12. [11] 徐明岗, 于荣, 孙小凤, 等. 长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J]. 植物营养与肥料学报, 2006, (4): 459 − 465. doi: 10.3321/j.issn:1008-505X.2006.04.001 [12] Six J, Elliott E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5): 1367 − 1377. doi: 10.2136/sssaj1998.03615995006200050032x [13] 武 均, 蔡立群, 张仁陟, 等. 耕作措施对旱作农田土壤颗粒态有机碳的影响[J]. 中国生态农业学报, 2018, 26(5): 728 − 736. [14] 钱 宝, 刘 凌, 肖 潇. 土壤有机质测定方法对比分析[J]. 河海大学学报(自然科学版), 2011, 39(1): 34 − 38. [15] 郭万里, 武 均, 蔡立群, 等. 不同氮素水平下生物质炭、秸秆添加对陇中黄土高原旱作农田土壤活性有机碳的影响[J]. 水土保持学报, 2020, 34(1): 283 − 291. [16] 李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004, (4): 544 − 552. doi: 10.3321/j.issn:0564-3929.2004.04.008 [17] 赵丽娟. 长期不同施肥方式对黑土有机碳、氮的影响[D]. 东北农业大学, 2005. [18] 张敬业, 张文菊, 徐明岗, 等. 长期施肥下红壤有机碳及其颗粒组分对不同施肥模式的响应[J]. 植物营养与肥料学报, 2012, 18(4): 868 − 875. [19] 张世汉, 武 均, 张仁陟, 等. 施氮对陇中黄土高原旱作农田土壤颗粒态有机碳的影响[J]. 水土保持研究, 2019, 26(6): 7 − 11. [20] 樊廷录, 王淑英, 周广业, 等. 长期施肥下黑垆土有机碳变化特征及碳库组分差异[J]. 中国农业科学, 2013, 46(2): 300 − 309. doi: 10.3864/j.issn.0578-1752.2013.02.009 [21] 刘 艳, 马茂华, 吴胜军, 等. 干湿交替下土壤团聚体稳定性研究进展与展望[J]. 土壤, 2018, 50(5): 853 − 865. [22] 袁颖红, 李辉信, 黄欠如, 等. 不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J]. 生态学报, 2004, (12): 2961 − 2966. doi: 10.3321/j.issn:1000-0933.2004.12.045 [23] 余 高, 陈 芬, 谢英荷, 等. 有机肥替代化肥比例对黄壤土活性有机碳及酶活性的影响[J]. 中国蔬菜, 2020, (4): 48 − 55. [24] 贺 美, 王迎春, 王立刚, 等. 深松施肥对黑土活性有机碳氮组分及酶活性的影响[J]. 土壤学报, 2020, 57(2): 446 − 456. doi: 10.11766/trxb201810180282 [25] 罗原骏, 蒲玉琳, 龙高飞, 等. 施肥方式对土壤活性有机碳及碳库管理指数的影响[J]. 浙江农业学报, 2018, 30(8): 1389 − 1397. doi: 10.3969/j.issn.1004-1524.2018.08.17 [26] 高忠霞, 周建斌, 王祥, 等. 不同培肥处理对土壤溶解性有机碳含量及特性的影响[J]. 土壤学报, 2010, 47(1): 115 − 121. doi: 10.11766/trxb2010470117 [27] Yano Y, McDowell W H, Aber J D. Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition[J]. Soil Biology and Biochemistry, 2000, 32(11 − 12): 1743 − 1751. doi: 10.1016/S0038-0717(00)00092-4 [28] Debasish-Saha, Kukal S S, Bawa S S, et al. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks Hills of lower Himalayas[J]. Land Degradation & Development, 2015, 25(5): 23 − 40. [29] 何冬梅. 不同土地利用方式土壤有机碳结构及矿化特征[D]. 南京林业大学, 2014. [30] 刘红梅, 张海芳, 赵建宁, 等. 氮添加对贝加尔针茅草原土壤活性有机碳和碳库管理指数的影响[J]. 草业学报, 2020, 29(08): 18 − 26. [31] 王朔林, 杨艳菊, 王改兰, 等. 长期施肥对栗褐土活性有机碳的影响[J]. 生态学杂志, 2015, 34(5): 1223 − 1228. [32] 张璐, 张文菊, 徐明岗, 等. 长期施肥对中国3种典型农田土壤活性有机碳库变化的影响[J]. 中国农业科学, 2009, 42(05): 1646 − 1655. doi: 10.3864/j.issn.0578-1752.2009.05.018 [33] 王 栋, 李辉信, 李小红, 等. 覆草旱作对稻田土壤活性有机碳的影响[J]. 中国农业科学, 2011, 44(1): 75 − 83. doi: 10.3864/j.issn.0578-1752.2011.01.009 [34] Tang H, Xiao X, Tang W, et al. Long-term effects of NPK fertilizers and organic manures on soil organic carbon and carbon management index under a double-cropping rice system in Southern China[J]. Communications in Soil Science and Plant Analysis, 2018, 49(16): 1 − 14. [35] Moharana P C, Sharma B M, Biswas D R, et al. Long-term effect of nutrient management on soil fertility and soil organic carbon pools under a 6-year-old pearl millet–wheat cropping system in an Inceptisol of subtropical India[J]. Field Crops Research, 2012, 136(none): 32 − 41. -