Effects of Application of Potassium Carboxymethyl Cellulose on Soil Water and Nutrients in Newly Cultivated Farmland
-
摘要:
目的 基于黄土高原新造耕地土壤质量改良需求,开展以羧甲基纤维素钾(CMC-K)为土壤改良剂的田间定位试验研究,为新造耕地土壤水分保持与养分改良提供依据。 方法 设置CK(0 kg hm−2)、T1(100 kg hm−2)、T2(500 kg hm−2)、T3(1000 kg hm−2)和T4(2000 kg hm−2)5个处理,对不同处理的新造耕地土壤水分、电导率与养分进行了测定与分析。 结果 新造耕地施用CMC-K土壤含水量提高14.6%~121.7%,在谷子生长季前期(6月和7月)和后期(10月)土壤保水功效较大。在CMC-K较高施用量(1000 ~ 2000 kg hm−2)情况下,谷子生长季前期(6月)土壤电导率提高了37.3% ~ 73.4%;全部处理在谷子生长季后期(10月)的土壤电导率显著降低,降低幅度达19.2% ~ 21.8%;谷子生长季的土壤电导率呈现降低趋势。施用CMC-K能够提高土壤硝态氮9.6% ~ 46.5%、速效磷21.9% ~ 207.9%和速效钾13.2% ~ 95.9%,对土壤pH基本没有影响。施用CMC-K谷子产量提高了6.2% ~ 19.2%。 结论 施用CMC-K能够保持土壤水分,促进养分吸收利用,提高谷子产量,可以作为黄土高原新造耕地土壤改良剂使用,推荐施用量约100 kg hm−2。 Abstract:Objective Based on the requirement of soil water and nutrient improvement of newly cultivated farmland of Loess Plateau in Yanan, Shaanxi Province, potassium carboxymethyl cellulose (CMC-K) was acted as a soil amendment. Method The field experiment was conducted with 5 treatments ( CK, 0 kg hm−2; T1, 100 kg hm−2; T2, 500 kg hm−2; T3, 1000 kg hm−2; T4, 2000 kg hm−2) to research the changes in soil water, soil electric conductivity and soil nutrients. Result CMC-K application improved soil water content 14.6%-121.7% in newly cultivated farmland, the efficacy of CMC-K application was better in early (June and July) and end-stage (October) of millet growing season than those in the middle stage (August and September). The large CMC-K application amounts (1000-2000 kg hm−2) could improve significantly soil electric conductivity by 37.3%-73.4% in early (June) of millet growing season, and soil electric conductivities of all treatments were decreased significantly by 19.2%-21.8% in end (October) of millet growing season. Soil electric conductivities presented decreasing trend in the millet growing season. CMC-K application had no effects on soil total nitrogen, total phosphorus, total potassium, and pH, but enhanced soil nitrate (9.6%-46.5%), available phosphorus (21.9%-207.9%), and available potassium (13.2%-95.9%). CMC-K application could increase millet yield by 6.2%-19.2%. Conclusion CMC-K application can hold soil water, promote soil nutrient absorption and raise millet yield in newly cultivated farmland in Loess Plateau, which may act as a soil amendment and the recommended application rate is 100 kg hm−2. -
表 1 施用CMC-K对农田土壤氮磷钾养分的影响
Table 1. Effect of application of CMC-K on soil nitrogen (N), phosphorus (P) and potassium (K) contents
处理
Treatment全氮(g kg−1)
Total N全磷(g kg−1)
Total P全钾(g kg−1)
Total K硝态氮(mg kg−1)
Nitrate N速效磷(mg kg−1)
Available P速效钾(mg kg−1)
Available KpH 2018 CK 0.57 ± 0.02 a 0.48 ± 0.02 b 15.78 ± 0.20 a 4.68 ± 0.44 a 0.38 ± 0.04 a 45.33 ± 2.52 a 8.38 ± 0.03 a T1 0.54 ± 0.09 a 0.34 ± 0.09 a 17.32 ± 0.34 c 5.13 ± 0.35 b 1.17 ± 0.13 c 57.00 ± 5.00 b 8.39 ± 0.04 a T2 0.52 ± 0.06 a 0.42 ± 0.06 b 17.01 ± 0.73 c 5.30 ± 0.12 b 0.57 ± 0.12 b 51.33 ± 3.51 b 8.25 ± 0.12 a T3 0.61 ± 0.02 a 0.40 ± 0.02 b 17.40 ± 0.46 c 6.49 ± 0.27 c 0.62 ± 0.36 b 66.00 ± 3.61 c 8.38 ± 0.26 a T4 0.59 ± 0.02 a 0.44 ± 0.02 b 16.34 ± 0.34 b 6.85 ± 0.19 c 3.39 ± 0.24 d 74.33 ± 3.21 d 8.34 ± 0.04 a 2019 CK 0.56 ± 0.02 a 0.45 ± 0.02 a 16.12 ± 0.20 a 4.46 ± 0.44 a 0.41 ± 0.04 a 47.14 ± 2.52 a 8.38 ± 0.03 a T1 0.58 ± 0.06 a 0.45 ± 0.06 a 16.02 ± 0.68 a 5.09 ± 0.38 b 0.55 ± 0.10 b 57.67 ± 1.53 b 8.37 ± 0.04 a T2 0.57 ± 0.01 a 0.45 ± 0.01 a 16.58 ± 0.37 a 5.74 ± 0.08 c 0.64 ± 0.13 c 65.00 ± 4.00 c 8.32 ± 0.06 a T3 0.58 ± 0.05 a 0.44 ± 0.05 a 16.43 ± 0.17 a 6.00 ± 0.52 c 0.50 ± 0.02 b 87.00 ± 5.29 d 8.35 ± 0.03 a T4 0.60 ± 0.02 a 0.47 ± 0.02 a 16.87 ± 0.09 a 6.44 ± 0.76 c 0.68 ± 0.03 c 92.33 ± 8.50 e 8.33 ± 0.04 a 注:同列不同小写字母表示处理间差异显著(P < 0.05) 表 2 CMC-K用量与各土壤性质指标间相关性分析(Pearson相关系数)
Table 2. Correlation analysis between CMC-K and various indicators (Pearson correlations coefficient)
CMC-K施用量
CMC-K
application rate土壤含水量
Soil water
content土壤电导率
soil electric
conductivity全氮
Total
nitrogen全磷
Total
phosphorus全钾
Total
potassium硝态氮
Nitrogen有效磷
Available
phosphorus有效钾
Available
potassium产量
YieldCMC-K施用量 1 0.5587* −0.3807 −0.0277 0.1772 0.2494 0.9159* 0.5776* 0.8341* 0.7180* 土壤含水量 1 −0.3368 0.2698 −0.3144 0.6132* 0.8059* 0.2704 0.4792 0.8142* 土壤电导率 1 0.3907 0.2959 −0.5030 −0.4091 −0.5390* −0.0085 −0.1453 全氮 1 0.2327 0.0739 0.0555 −0.6686* 0.2834 0.1987 全磷 1 −0.7473* −0.0280 −0.1476 0.1335 −0.2113 全钾 1 0.4168 0.0145 0.2448 0.5123* 硝态氮 1 0.5543* 0.8032* 0.8861* 有效磷 1 0.2443 0.3046 有效钾 1 0.8347* 产量 1 注:“*”表示0.05显著性水平。 -
[1] 傅伯杰, 陈利顶, 邱 扬, 等. 黄土丘陵沟壑区土地利用结构与生态过程[M]. 北京: 商务印书馆, 2002. [2] 苏仲仁, 王 晶. 全国八大重点治理区水土保持效益分析[J]. 中国水土保持, 1992, (3): 1 − 4. [3] Xiao J F. Satellite evidence for significant biophysical consequences of the “Grain for Green” Program on the Loess Plateau in China[J]. Journal of Geophysical Research Biogeosciences, 2014, 119(12): 2261 − 2275. doi: 10.1002/2014JG002820 [4] Chen Y P, Wang K B, Lin Y S, et al. Balancing green and grain trade[J]. Nature Geoscience, 2015, 8(10): 739 − 741. doi: 10.1038/ngeo2544 [5] Wang S, Fu B J, Piao S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, (9): 38 − 41. [6] Lu Y H, Fu B J, Feng X M, et al. A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China[J]. PLoS One, 2012, 7(2): 1 − 10. [7] 周卫健, 安芷生. 实施与“退耕还林还草”并重的“治沟造地”重大方针的建议[N]. 中国科学报, 2014-09-19. [8] 周怀龙, 王文昭, 郝占东. 治沟造地惠民生, 再造陕北好江南[N]. 中国国土资源报, 2012-11-16. [9] 张信宝, 金 钊. 延安治沟造地是黄土高原淤地坝建设的继承与发展[J]. 地球环境科学, 2015, 6(4): 261 − 264. [10] 延安治沟造地: 千沟万壑变良田, http://sn.ifeng.com/a/20190928/7766055_0.shtml, 2019-09-28. [11] LI H, WANG A P. Interaction effects of polyacrylamide application and slope gradient on potassium and nitrogen losses under simulated rainfall[J]. Catena, 2016, 136: 162 − 174. doi: 10.1016/j.catena.2015.05.008 [12] Chang A, Yang P L, Zeng W Z, et al. Impact of raindrop diameter and polyacrylamide application on runoff, soil and nitrogen loss via raindrop splashing[J]. Geoderma, 2019, 353: 372 − 381. doi: 10.1016/j.geoderma.2019.07.026 [13] Min Z, Zhen H, Ji H D, et al. Simultaneous control of soil erosion and arsenic leaching at disturbed land using polyacrylamide modified magnetite nanoparticles[J]. Science of The Total Environment, 2020, 702: 134997. doi: 10.1016/j.scitotenv.2019.134997 [14] Eiham A, Hohat E, Mohammad R, et al. Shear strength of an unsaturated loam soil as affected by vetiver and polyacrylamide[J]. Soil and Tillage Research, 2019, 194: 104331. doi: 10.1016/j.still.2019.104331 [15] Tadayonnejad M, Mosaddehi M, Ghorbani S. Changing soil hydraulic properties and water repellency in a pomegranate orchard irrigated with saline water by applying polyacrylamide[J]. Agricultural Water Management, 2017, 188: 12 − 20. doi: 10.1016/j.agwat.2017.03.026 [16] Chen Z, Wang R X, Hang P Y, et al. Soil water repellency of the artificial soil and natural soil in rocky slopes as affected by the drought stress and polyacrylamide[J]. Science of The Total Environment, 2018, 619–620: 401 − 409. [17] Christophen N, Liang X Q, Shan S D, et al. Synergistic effects of anionic polyacrylamide and gypsum to control phosphorus losses from biogas slurry applied soils[J]. Chemosphere, 2019, 23: 953 − 961. [18] 陈义群, 董元华. 土壤改良剂的研究与应用进展[J]. 生态环境, 2008, 17(3): 1282 − 1289. [19] Purakayastha T, Bera T, Bhaduri D, et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security, Chemosphere, 2019, 2227: 345 − 365. [20] Manuela M, Gabriela L, Elena U, et al. Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea controlled release and water retention. Carbohydrate Polymers, 2019, 223: 115040. [21] He D Y, Cui J, Gao M, et al. Effects of soil amendments applied on cadmium availability, soil enzyme activity, and plant uptake in contaminated purple soil[J]. Science of The Total Environment, 2019, 6541: 1364 − 1371. [22] Kumuduni N, Sabry M, SEASON S, et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review[J]. Environment International, 2020, 134: 105046. doi: 10.1016/j.envint.2019.105046 [23] https://baike.baidu.com/item/%E7%BE%A7%E7%94%B2%E5%9F%BA%E7%BA%A4%E7%BB%B4%E7%B4%A0%E9%92%A0/1546832?fr=aladdin [24] 邢 磊, 杨世琦. 改性纤维素对盆栽小麦生长及土壤水分和养分的影响[J]. 西北农业学报, 2019, 28(4): 536 − 545. doi: 10.7606/j.issn.1004-1389.2019.04.006 [25] Ahmed M, Gehad S, Gehan M, et al. Fabrication of novel iminodiacetic acid-functionalized carboxymethyl cellulose microbeads for efficient removal of cationic crystal violet dye from aqueous solutions[J]. International Journal of Biological Macromolecules, 2020, 148: 1072 − 1083. doi: 10.1016/j.ijbiomac.2020.01.182 [26] Lu S, Liu W B, Wand Y B, et al. An adsorbent based on humic acid and carboxymethyl cellulose for efficient dye removal from aqueous solution[J]. International Journal of Biological Macromolecules, 2019, 135: 790 − 797. doi: 10.1016/j.ijbiomac.2019.05.095 [27] Shi J X, Han Y X, Xu C Y, et al. Enhanced anaerobic degradation of selected nitrogen heterocyclic compounds with the assistance of carboxymethyl cellulose[J]. Science of the Total Environment, 2019, 689: 781 − 788. doi: 10.1016/j.scitotenv.2019.06.469 [28] Song L, Liu F Q, Zhu C Q, et al. Facile one-step fabrication of carboxymethyl cellulose based hydrogel for highly efficient removal of Cr(VI) under mild acidic condition[J]. Chemical Engineering Journal, 2019, 3691: 641 − 651. [29] Sima G, Morteza K, Mahmoud R, et al. Response surface methodology(RSM) modeling to improve removal of Cr(VI) ions from tannery wastewater using sulfated carboxymethyl cellulose nanofilter[J]. Journal of Cleaner Production, 2019, 208: 736 − 742. doi: 10.1016/j.jclepro.2018.10.177 -