留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

攀枝花干热河谷区不同海拔高度农田土壤nirS型反硝化细菌的群落结构分析

雷善钰 辜运富 张亚洁 叶田会 杨鹏 余伟 闫芳芳 张宗锦

雷善钰, 辜运富, 张亚洁, 叶田会, 杨 鹏, 余 伟, 闫芳芳, 张宗锦. 攀枝花干热河谷区不同海拔高度农田土壤nirS型反硝化细菌的群落结构分析[J]. 土壤通报, 2022, 53(6): 1368 − 1375 doi: 10.19336/j.cnki.trtb.2021060204
引用本文: 雷善钰, 辜运富, 张亚洁, 叶田会, 杨 鹏, 余 伟, 闫芳芳, 张宗锦. 攀枝花干热河谷区不同海拔高度农田土壤nirS型反硝化细菌的群落结构分析[J]. 土壤通报, 2022, 53(6): 1368 − 1375 doi: 10.19336/j.cnki.trtb.2021060204
LEI Shan-yu, GU Yun-fu, ZHANG Ya-jie, YE Tian-hui, YANG Peng, YU Wei, YAN Fang-fang, ZHANG Zong-jin. Community Structure Analysis of nirS Denitrifying Bacteria in Farmland Soil at Different Altitudes in the Dry-hot Valley of Panzhihua[J]. Chinese Journal of Soil Science, 2022, 53(6): 1368 − 1375 doi: 10.19336/j.cnki.trtb.2021060204
Citation: LEI Shan-yu, GU Yun-fu, ZHANG Ya-jie, YE Tian-hui, YANG Peng, YU Wei, YAN Fang-fang, ZHANG Zong-jin. Community Structure Analysis of nirS Denitrifying Bacteria in Farmland Soil at Different Altitudes in the Dry-hot Valley of Panzhihua[J]. Chinese Journal of Soil Science, 2022, 53(6): 1368 − 1375 doi: 10.19336/j.cnki.trtb.2021060204

攀枝花干热河谷区不同海拔高度农田土壤nirS型反硝化细菌的群落结构分析

doi: 10.19336/j.cnki.trtb.2021060204
基金项目: 四川省烟草公司攀枝花市公司项目(202051040024038)、四川省烟草公司攀枝花市公司项目(PZH2019003)和国家自然科学基金项目(41201256)资助。
详细信息
    作者简介:

    雷善钰(1998−),女,湖北随州人,硕士研究生,从事微生物相关研究。E-mail: 1105796311@qq.com

    通讯作者:

    E-mail: guyf@sicau.edu.cn

  • 中图分类号: Q938

Community Structure Analysis of nirS Denitrifying Bacteria in Farmland Soil at Different Altitudes in the Dry-hot Valley of Panzhihua

  • 摘要:   目的  探明攀枝花干热河谷地区不同海拔高度农田土壤的反硝化细菌群落结构和丰度特征。  方法  以攀枝花干热河谷地区1600 m、1800 m和2000 m三个海拔高度的农田土壤为研究材料,通过末端限制性片段长度多态性(T-RFLP)技术分析不同海拔高度农田土壤的nirS型反硝化细菌群落结构和丰度。  结果  不同海拔梯度农田土壤pH均小于7,土壤有机碳、全氮、速效钾和铵态氮的含量随海拔升高而降低,碱解氮、有效磷和硝态氮含量随海拔升高先增加后降低;群落结构丰富度随海拔增加呈上升趋势,而香侬指数和均匀度呈现出先上升后下降的趋势;T-RFLP分析结果显示,35 bp的T-RFs相对丰度最大,随海拔增加而减少,其次是40 bp的T-RFs,随海拔增加而增加;系统发育分析显示,β-变形菌门为该区域优势反硝化细菌;冗余分析结果显示,土壤硝态氮和有效磷是驱动该区域土壤nirS型反硝化细菌群落组成的主要因子。  结论  攀枝花干热河谷区不同海拔高度农田土壤中的nirS型反硝化细菌群落结构变化明显 (P < 0.05),且受土壤硝态氮和有效磷显著影响(P < 0.05)。研究结果可为深入认识干热河谷地区农田土壤反硝化细菌对海拔高度的响应机制提供理论依据。
  • 图  1  不同海拔高度土壤nirS型反硝化细菌群落差异

    H1海拔1600m, H2海拔1800m,H3海拔 2000m

    Figure  1.  Community variation of nirS denitrifying bacteria at different altitudes

    图  2  不同海拔高度下nirS型反硝化群落组成

    H1海拔1600m, H2海拔1800m,H3海拔 2000m

    Figure  2.  Comparison of relative abundance of nirS denitrifying gene terminal restriction fragment (T-RF) under different altitudes

    图  3  土壤样品nirS基因序列N-J法构建的系统发育树

    以假单胞菌nirN基因(D84475)和nirF基因(D50473)作为系统发育分析的外组,括号里为基因登陆号。

    Figure  3.  Neighbor-joining phylogenetic tree of nirS gene sequences. nirN gene

    图  4  不同海拔高度红壤中nirS型反硝化细菌与环境因子变化的RDA排序

    H1海拔1600 m, H2海拔1800 m,H3海拔 2000 m。

    Figure  4.  RDA sequencing of nirS denitrifying bacteria and environmental factors in Red soil at different altitudes

    表  1  攀枝花干热河谷不同海拔高度农田土壤的理化性质

    Table  1.   Physico-chemical properties of soil samples collected from different altitudes in the dry-hot valley of Panzhihua

    海拔
    Altitude
    pH有机质
    SOC
    (g kg−1)
    全氮
    TN
    (g kg−1)
    碱解氮
    AN
    (mg kg−1)
    有效磷
    AP
    (mg kg−1)
    速效钾
    AK
    (mg kg−1)
    硝态氮
    NO3−N
    (mg kg−1)
    铵态氮
    NH4+−N
    (mg kg−1)
    反硝化速率
    DR
    (mg kg−1 h−1)
    H1 5.54 ± 0.04 a* 34.15 ± 2.13 a 1.21 ± 0.10 a 59.27 ± 5.71 a 32.92 ± 6.93 a 141.91 ± 14.56 a 15.23 ± 2.85 b 23.90 ± 2.39 a 0.11 ± 0.01 a
    H2 6.06 ± 0.38 a 29.02 ± 3.87 ab 1.12 ± 0.16 a 62.77 ± 7.42 a 39.74 ± 8.45 a 99.50 ± 20.47 ab 28.60 ± 2.01 a 23.47 ± 1.71 a 0.09 ± 0.01 a
    H3 5.79 ± 0.23 a 23.57 ± 2.43 b 0.91 ± 0.09 a 49.47 ± 5.89 a 28.68 ± 7.44 a 68.25 ± 6.99 b 11.86 ± 1.83 b 22.82 ± 4.19 a 0.08 ± 0.01 b
      注:表中数据为均值 ± 标准差;不同小写字母表示同一指标在不同处理间的差异显著(P < 0.05)。H1海拔1600 m, H2海拔1800 m,H3海拔2000 m。
    下载: 导出CSV

    表  2  攀枝花干热河谷不同海拔高度农田土壤反硝化速率与理化性质Pearson相关分析

    Table  2.   Pearson correlation analysis of soil denitrification rate and physicochemical properties of soil samples collected from different altitudes in the dry-hot valley of Panzhihua

    海拔
    Altitude
    pH有机质
    SOC
    全氮
    TN
    碱解氮
    AN
    有效磷
    AP
    速效钾
    AK
    硝态氮
    NO3−N
    铵态氮
    NH4+−N
    H1 0.327 −0.927** 0.763 −0.383 0.094 −0.48 0.054 −0.559
    H2 −0.306 −0.942** −0.378 0.737 −0.35 −0.145 −0.455 −0.306
    H3 0.669 0.928** −0.487 −0.635 0.051 −0.145 0.492 −0.439
      注:** 表示在0.01级别(双尾),相关性显著。
    下载: 导出CSV

    表  3  不同海拔高度下红壤中 nirS基因多样性指数

    Table  3.   Diversity indices of the nirS genes in Red soil at different altitudes

    海拔
    Altitude
    香侬-威纳指数(H
    Shannon-wiener index
    丰富度(d
    Richness
    均匀度(E
    Evenness
    H1 1.58 ± 0.24 a 5.15 ± 0.41 a 1.05 ± 0.15 a
    H2 1.65 ± 0.13 a 5.40 ± 0.52 ab 1.09 ± 0.09 a
    H3 1.47 ± 0.20 ab 5.95 ± 0.64 b 0.94 ± 0.14 ab
      注:表中数据为均值 ± 标准差;不同小写字母表示同一指标在不同处理间的差异显著(P < 0. 05),H1海拔1600 m, H2海拔1800 m,H3海拔 2000 m.
    下载: 导出CSV
  • [1] 孙建光, 高俊莲, 马晓彤, 等. 反硝化微生物分子生态学技术及相关研究进展[J]. 中国土壤与肥料, 2007, 2: 7 − 12. doi: 10.11838/sfsc.20070202
    [2] 宋亚娜, 林智敏, 林 艳. 氮肥对稻田土壤反硝化细菌群落结构和丰度的影响[J]. 中国生态农业学报, 2012, 20(1): 7 − 12.
    [3] Zumft W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews, 1997, 61(4): 533 − 616.
    [4] Braker G, Zhou J Z, Wu L Y, et al. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversityof denitrifying bacteria in Pacific northwest marine sedimentcommunities[J]. Applied and Environmental Microbiology, 2000, 66(5): 2096 − 2104. doi: 10.1128/AEM.66.5.2096-2104.2000
    [5] 张 晶, 林先贵, 尹 睿. 参与土壤氮素循环的微生物功能基因多样性研究进展[J]. 中国生态农业学报, 2009, 17(5): 1029 − 1034.
    [6] 曹乾斌, 王邵军, 陈闽昆, 等. 不同恢复阶段热带森林土壤nirS型反硝化微生物群落结构及多样性特征[J]. 生态学报, 2021, 41(2): 626 − 636.
    [7] 李君剑, 杜宏宇, 刘 菊, 等. 关帝山不同海拔土壤碳矿化和微生物特征[J]. 中国环境科学, 2018, 38(5): 1811 − 1817. doi: 10.3969/j.issn.1000-6923.2018.05.026
    [8] 马 琳, 张卫华, 刘 淼. T-RFLP技术在土壤微生物群落多样性分析中的研究进展[J]. 农业与技术, 2017, 37(18): 244 − 245.
    [9] 王 磊, 梁艺凡, 杨军钱, 等. 亚热带主要造林树种土壤氮保留及相关功能的微生物特征[J]. 林业科学, 2020, 56(8): 27 − 37. doi: 10.11707/j.1001-7488.20200804
    [10] 王 婷, 刘丽丽, 张克强, 等. 牛场肥水灌溉对土壤nirKnirS型反硝化微生物群落结构的影响[J]. 生态学报, 2017, 37(11): 3655 − 3664.
    [11] 廖洪凯, 李 娟, 龙 健. 喀斯特干热河谷植被类型和小生境对土壤活性有机碳和基础呼吸的影响[J]. 土壤通报, 2013, 44(3): 580 − 586.
    [12] 张 静, 杨 鹏, 辜运富, 等. 攀枝花不同海拔高度烤烟农田红壤中氨氧化细菌与氨氧化古菌的群落结构分析[J]. 生态学报, 2021, 8: 1 − 8.
    [13] 高文萱, 闫建华, 杜会英, 等. 土壤nirS、nosZ型反硝化菌群落结构及多样性对牛场肥水灌溉水平的响应[J]. 农业环境科学学报, 2019, 38(5): 1089 − 1100. doi: 10.11654/jaes.2018-0901
    [14] 胡晓婧, 刘俊杰, 于镇华, 等. 东北黑土nirS型反硝化细菌群落和网络结构对长期施用化肥的响应[J]. 植物营养与肥料学报, 2020, 26(1): 1 − 9. doi: 10.11674/zwyf.19063
    [15] 陈 娜, 刘 毅, 黎 娟, 等. 长期施肥对稻田不同土层反硝化细菌丰度的影响[J]. 中国环境科学, 2019, 39(5): 2154 − 2160. doi: 10.3969/j.issn.1000-6923.2019.05.044
    [16] 王国敏, 曹嘉瑜, 倪 健. 山地土壤微生物地理分布格局及其驱动机制[J]. 地球与环境, 2019, 47(4): 565 − 574.
    [17] 段益莉, 李继侠, 江 强, 等. 长白山东坡不同海拔落叶松土壤微生物碳代谢及酶活性研究[J]. 生态环境学报, 2019, 28(4): 652 − 660.
    [18] 张文婧, 王昌全, 刘朝科, 等. 米易县植烟土壤有效态微量元素含量特征分析[J]. 四川农业大学学报, 2012, 30(3): 272 − 277. doi: 10.3969/j.issn.1000-2650.2012.03.002
    [19] 鲁如坤. 土壤农化分析方法[M]. 北京: 中国农业科技出版社, 2000: 146 − 195.
    [20] 李如忠, 王 莉, 刘 超. 巢湖滨岸水塘洼地沉积物反硝化速率及对外源碳氮的响应[J]. 环境科学, 2020, 41(4): 1684 − 1691.
    [21] Li H L, Zhang Y, Wang T T, et al. Responses of soil denitrifying bacterial communities carrying nirS, nirK and nosZ genes to revegetation of moving sand dunes[J]. Ecological Indicators, 2019, 107(C): 105541 − 105560.
    [22] 王蓥燕, 卢圣鄂, 辜运富, 等. 若尔盖高原湿地泥炭沼泽土亚硝酸盐还原酶(nirK)反硝化细菌群落结构分析[J]. 生态学报, 2017, 37(19): 6607 − 6615.
    [23] 王 琳, 欧阳华, 周才平, 等. 贡嘎山东坡土壤有机质及氮素分布特征[J]. 地理学报, 2004, 59(6): 1012 − 1019.
    [24] 斯贵才, 袁艳丽, 王 建, 等. 藏东南森林土壤微生物群落结构与土壤酶活性随海拔梯度的变化[J]. 微生物学通报, 2014, 41(10): 2001 − 2011.
    [25] 李梦佳, 何中声, 江 蓝, 等. 海拔与土壤因子驱动了戴云山南坡森林树木多样性与系统发育多样性[J]. 生态学报, 2021, 3: 1 − 10.
    [26] 杨文焕, 石大钧, 张 元, 等. 高原湖泊沉积物中反硝化微生物的群落特征−以包头南海湖为例[J]. 中国环境科学, 2020, 40(1): 431 − 438. doi: 10.3969/j.issn.1000-6923.2020.01.048
    [27] Ishii S, Yamamoto M, Tago K, et al. Microbial populations invarious paddy soils respond differently to denitrification-inducing conditions, albeit background bacterial populations are similar[J]. Soil Science and Plant Nutrition, 2010, 56(2): 220 − 224. doi: 10.1111/j.1747-0765.2010.00453.x
    [28] 李玉倩, 马俊伟, 高 超, 等. 青藏高原高寒湿地春夏两季根际与非根际土壤反硝化速率及nirS型反硝化细菌群落特征分析[J]. 环境科学, 2021, 42(10): 4959 − 4967.
    [29] 任佐华, 张于光, 李迪强, 等. 三江源地区高寒草原土壤微生物活性和微生物量[J]. 生态学报, 2011, 31(11): 3232 − 3238.
    [30] 宋亚娜, 吴明基, 林 艳. 稻田土壤nirS型反硝化细菌群落对氮肥水平的响应[J]. 中国农业科学, 2013, 46(9): 1818 − 1826. doi: 10.3864/j.issn.0578-1752.2013.09.009
    [31] Rousk J, Baath E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 2010, 4(10): 1340 − 1351. doi: 10.1038/ismej.2010.58
    [32] 徐 杰, 石 维, 同延安. 不同氮肥形态对土壤释放N2O的影响[J]. 土壤通报, 2009, 40(2): 325 − 330.
    [33] Tang Y, Zhang X, Li D, et al. Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations[J]. Soil Biology and Biochemistry, 2016, 103: 284 − 293. doi: 10.1016/j.soilbio.2016.09.001
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  19
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2022-04-12
  • 刊出日期:  2022-12-06

目录

    /

    返回文章
    返回