Roles of Vegetation Buffer Zones on Non-point Source Pollution Control in Water Source Areas
-
摘要: 在山地丘陵区遭遇高强度降雨时,常常发生水土流失;水流携带泥沙下泄,过量施入农田的肥料、农药等化学物质随之进入河流、水库、湖泊等地表水和地下水水体,进而造成水体富营养化等面源污染,危害水源地安全。为梳理植被缓冲带能够控制水土流失、阻控污染物移动、解决水源地面源污染问题,明确该项技术措施减少和治理水源地面源污染的机制,为水源地面源污染防治和水环境改善提供参考。在概括介绍植被缓冲带的类型、功能的基础上,对该项技术措施减少和治理水源地面源污染的机制进行讨论。植被缓冲带治理水源地面源污染的机制主要有:①植物在生长过程中自身对氮磷等物质的吸收;②利用植被固结土壤,减少水土流失;③植被覆盖、拦蓄能够延长径流在地面的停留时间而增加水分入渗、减少氮磷等物质随地表径流流失;④植物根系参与土壤中多种物理、化学和生物过程,加速碳、氮、磷等物质的形态转化。针对水源地面源污染特点和植被缓冲带的建设技术及其应用要点,提出相关建议,并对今后该技术的发展进行了展望。Abstract: Under heavy rainfall conditions, over-input fertilizers and chemicals with surface runoff through the catchment area flow into surface water and groundwater such as rivers and reservoirs, causing water eutrophication. Controlling soil and water erosion through ecological measures is an important way to deal with non-point source pollution in these areas. The ecological functions of vegetation buffer zones and the mechanism to reduce non-point source pollution were discussed in water source areas, which will provide scientific basis and technical support for non-point source pollution prevention and water environment improvement. The published papers related to vegetation buffer zones and non-point source pollution were collected and discussed. The mechanisms included: ① the absorption of nitrogen and phosphorus by plants; ② vegetation to consolidate soil and reduce soil erosion; ③ vegetation coverage prolonged the residence time of runoff on the ground, increased water infiltration, and reduced the loss of nitrogen, phosphorus and other substances with surface runoff; ④ plant roots participated in various physical, chemical and biological processes in the soil, accelerated the morphological transformation of carbon, nitrogen, phosphorus and other substances. Some suggestions have been pointed out according to the characteristics of water source non-point source pollution.
-
表 1 部分河岸缓冲带污染物去除效果汇总
Table 1. Pollutant removal effectiveness of some riparian buffer zones
作者
Author地区
Area类型
Type污染物去除效果
EffectivenessJabłońska et al. 2021 [53] 波兰中部地区 湿地 全氮去除率为34-92%,全磷去除率为17-63% Zak et al. 2019 [40] 丹麦Fillerup地区 非木本植物植被缓冲带(挺水植物,沉水植物,浮游植物等 对于硝态氮去除效果为30 ± 19%,全氮去除效果为31 ± 16%,全磷的去除效果为44 ± 10% Zak et al. 2019 [40] 丹麦Fillerup地区 木本植物植被缓冲带(欧洲桤木) 对于硝态氮去除效果为37 ± 17%,全氮去除效果为38 ± 16%,全磷的去除效果为52 ± 12%。 Aguiar et al. 2015 [17] 巴西Cará-Cará河 木本 减少99% TN,99% TP Aguiar et al. 2015 [17] 巴西Cará-Cará河 灌木 减少66.4% TP,83.9% TN Aguiar et al. 2015 [17] 巴西Cará-Cará河 草本 减少61.6% TP,52.9% TN 表 2 植被缓冲带构建技术
Table 2. Vegetation buffer zone construction techniques
区位
Location树种配置
Tree species技术要点
Key technique远岸区 耐水湿乔木:水杉、池杉、垂柳、枫杨、重阳木、合欢、乌桕、青桐、黄山栾、国槐、臭椿、银杏、落羽杉、女贞、桂花、香樟、雪松、桑葚、朴树。 1. 旱地开沟、整地:在旱地宽阔处因势造形,与河道、湖面垂直方向每15 m开挖一条一级排水沟,沟渠规格上宽60 cm,下宽40 cm,深40 cm;与河道平行方向每6 m开挖一条二级排水沟,沟渠规格上宽30 cm,下宽20 cm,深20 cm。开沟后,在出现的地垄上清理杂草、杂物,平整土地,开挖种植穴、种植穴规格为70 cm × 70 cm × 70 cm。
2. 苗木要求:①无病虫害,生长健壮苗木;②苗木规格:乔木要求胸径5 cm左右,高度2 m 左右,土球是胸径的6 ~ 8倍。
3. 造林密度:乔木株行距3 m × 3 m。
4. 水肥措施:种植后立即浇透定根水,后期管理中除非干旱性灾害气候,一般不人为干预浇水。
5. 覆盖:定植后在苗木根部用地膜覆盖,地膜用土压实。
6. 支撑固定:用木棒斜插入土中,用草绳绑紧,使定植苗木不能晃动。
7. 抚育措施:封闭管理,加强病虫防治、预防涝灾、风灾和护林防火,杜绝其它人为种养行为。近岸区 耐水湿灌木:蜡杨梅、木槿、杞柳、夹竹桃、红叶石楠、芦竹、细叶水团花、海桐、小叶女贞、黄杨。 1. 旱地开沟、整地:在旱地宽阔处因势造形,与河道、湖面垂直方向每15 m开挖一条一级排水沟,沟渠规格上宽60 cm,下宽40 cm,深40 cm;与河道平行方向每6 m开挖一条二级排水沟,沟渠规格上宽30 cm,下宽20 cm,深20 cm。开沟后,在出现的地垄上清理杂草、杂物,平整土地,开挖种植穴、种植穴规格为70 cm × 70 cm × 70 cm。
2. 苗木要求:①无病虫害,生长健壮苗木;②苗木规格:灌木要求高度1 m左右,4分枝,土球是地径的4 ~ 6倍。
3. 造林密度:株行距1 m × 1 m。
4. 水肥措施:种植后立即浇透定根水,后期管理中除非干旱性灾害气候,一般不人为干预浇水。
5. 覆盖:定植后在苗木根部用地膜覆盖,地膜用土压实。
6. 抚育措施:封闭管理,加强病虫防治、预防涝灾、风灾和护林防火,杜绝其它人为种养行为。滨水区 挺水植物:芦苇、菰草、席草、香蒲、莎草、美人蕉等。 1. 植物分株繁殖,穴状采挖,一穴以10分支左右为宜,根埋入淤泥不漂浮;
2. 种植密度:挺水植物穴距3 m × 3 m,每亩74穴。 -
[1] 中华人民共和国国家统计局. 中国统计年鉴2019[R]. 北京: 中国统计出版社, 2019. [2] Xu K, Mo L C, Zhang Z M, et al. Water quantity and quality changes from forested riparian buffer in Beijing[J]. Environmental Science and Pollution Research, 2019, 26(5): 29041 − 29051. [3] Wang Q R, Liu R M, Men C, et al. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S AND SWAT[J]. Journal of Hydrology, 2018, 560: 86 − 96. doi: 10.1016/j.jhydrol.2018.03.022 [4] Liu R M, Zhang P P, Wang X J, et al. Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi river watershed[J]. Agricultural Water Management, 2013, 117: 9 − 18. doi: 10.1016/j.agwat.2012.10.018 [5] Farkas C, Beldring S, Bechmann M, et al. Soil erosion and phosphorus losses under variable land use as simulated by the INCA-P model[J]. Soil Use & Management, 2013, 29(s1): 124 − 137. [6] 王荣嘉, 高 鹏, 李 成, 等. 模拟降雨下麻栎林地表径流和壤中流及氮素流失特征[J]. 生态学报, 2019, 39(8): 2732 − 2740. [7] 王荣嘉, 高 鹏, 李 成, 等. 退耕林地麻栎刺槐林壤中流及其磷素流失特征[J]. 水土保持学报, 2019, 33(1): 9 − 13,19. [8] Valkama E, Usva K, Saarinen M, et al. A Meta-Analysis on nitrogen retention by buffer zones[J]. Journal of Environment Quality, 2018, 48(2): 270 − 279. [9] 孙士咏. 长三角低山丘陵区典型水库水源地面源污染发生机制与特征[D]. 中国林业科学研究院, 2020. [10] 丁丽莲. 土地利用对水库型水源地生态系统水质及交错区氮循环相关微生物的影响[D]. 浙江大学, 2021. [11] 王荣嘉. 黄前水库上游药乡小流域林地地表径流和壤中流氮磷流失特征[D]. 山东农业大学, 2019. [12] 吴永波. 河岸植被缓冲带减缓农业面源污染研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(3): 143 − 148. [13] Satchithanantham S, English B, Wilson H. Seasonality of phosphorus and nitrate retention in riparian buffers[J]. Journal of Environment Quality, 2019, 48(4): 915 − 920. doi: 10.2134/jeq2018.07.0280 [14] Cao X, Song C, Xiao J, et al. The optimal width and mechanism of riparian buffers for stormwater nutrient removal in the Chinese eutrophic Lake Chaohu Watershed[J]. Water, 2018, 10(10): 1489. doi: 10.3390/w10101489 [15] Henault-Ethier L, Lucotte M, Smedbol E, et al. Potential efficiency of grassy or shrub willow buffer strips against nutrient runoff from soybean and corn fields in southern Quebec, Canada[J]. Journal of Environmental Quality, 2019, 48(2): 352 − 361. doi: 10.2134/jeq2016.10.0391 [16] Hille S, Andersen Dk, Kronvang B, et al. Structural and functional characteristics of buffer strip vegetation in an agricultural landscape-high potential for nutrient removal but low potential for plant biodiversity[J]. Science of the Total Environment, 2018, 628-629: 805 − 814. doi: 10.1016/j.scitotenv.2018.02.117 [17] Aguiar T R, Rasera K, Parron L M, et al. Nutrient removal effectiveness by riparian buffer zones in rural temperate watersheds: The impact of no-till crops practices[J]. Agricultural Water Management, 2015, 149: 74 − 80. doi: 10.1016/j.agwat.2014.10.031 [18] de Souza A L T, Fonseca D G, Liborio R A, et al. Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil[J]. Forest Ecology and Management, 2013, 298: 12 − 18. doi: 10.1016/j.foreco.2013.02.022 [19] Weigelhofer G, Fuchsberger J, Teufl B, et al. Effects of riparian forest buffers on in-stream nutrient retention in agricultural catchments[J]. Journal of Environmental Quality, 2012, 41(2): 373 − 379. doi: 10.2134/jeq2010.0436 [20] 曾立雄, 黄志霖, 肖文发, 等. 河岸植被缓冲带的功能及其设计与管理[J]. 林业科学, 2010, 46(2): 128 − 133. doi: 10.11707/j.1001-7488.20100221 [21] 程昌锦, 丁 霞, 胡 璇, 等. 滨水植被缓冲带水质净化研究[J]. 世界林业研究, 2018, 31(4): 13 − 17. [22] 饶良懿, 崔建国. 河岸植被缓冲带生态水文功能研究进展[J]. 中国水土保持科学, 2008, (4): 121 − 128. doi: 10.3969/j.issn.1672-3007.2008.04.022 [23] 付 婧, 王云琦, 马 超, 等. 植被缓冲带对农业面源污染物的削减效益研究进展[J]. 水土保持学报, 2019, 33(2): 1 − 8. [24] Pavlidis G, Tsihrintzis V A, Karasali H, et al. Tree uptake of excess nutrients and herbicides in a maize-olive tree cultivation system[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2018, 53(1): 1 − 12. [25] Daigneault A J, Eppink F V, Lee W G. A national riparian restoration program in New Zealand: Is it value for money?[J]. Journal of Environmental Management, 2017, 187: 166 − 177. [26] 孙金伟, 许文盛. 河岸植被缓冲带生态功能及其过滤机理的研究进展[J]. 长江科学院院报, 2017, 34(3): 40 − 44. doi: 10.11988/ckyyb.20160706 [27] Fortier J, Truax B, Gagnon D, et al. Potential for hybrid poplar riparian buffers to provide ecosystem services in three watersheds with contrasting agricultural land use[J]. Forests, 2016, 7(2): 37. doi: 10.3390/f7020037 [28] Lind L, Hasselquist E M, Laudon H. Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes[J]. Journal of Environmental Management, 2019, 249: 109391. doi: 10.1016/j.jenvman.2019.109391 [29] Elliott K J, Vose J M. Effects of riparian zone buffer widths on vegetation diversity in southern Appalachian headwater catchments[J]. Forest Ecology and Management, 2016, 376: 9 − 23. doi: 10.1016/j.foreco.2016.05.046 [30] 肖继兵, 孙占祥, 刘 志, 等. 降雨侵蚀因子和植被类型及覆盖度对坡耕地土壤侵蚀的影响[J]. 农业工程学报, 2017, 33(22): 159 − 166. doi: 10.11975/j.issn.1002-6819.2017.22.020 [31] 杨 青, 杨广斌, 赵青松, 等. 喀斯特地区不同降雨和植被覆盖的坡面产流产沙特征[J]. 水土保持通报, 2020, 40(01): 9 − 16. [32] Parzych A, Astel A. Accumulation of N, P, K, Mg, and Ca in 20 species of herbaceous plants in headwater riparian forest[J]. Desalination and Water Treatment, 2018, 117: 156 − 167. doi: 10.5004/dwt.2018.22202 [33] Blankenberg A G B, Skarbøvik E. Phosphorus retention, erosion protection and farmers’ perceptions of riparian buffer zones with grass and natural vegetation: Case studies from South-Eastern Norway[J]. Ambio, 2020, 49: 1838 − 1849. doi: 10.1007/s13280-020-01361-5 [34] Dong Y, Xiong D, Su Z, et al. Effects of vegetation buffer strips on concentrated flow hydraulics and gully bed erosion based on in situ scouring experiments[J]. Land Degradation & Development, 2018, 29(6). [35] 邹 鑫, 朱习爱, 陈春峰, 等. 农林复合系统的水土保持效益[J]. 云南大学学报(自然科学版), 2020, 42(2): 382 − 392. [36] Wu J Q, Xiong L J, Sha C Y. Removal of N, P from seepage and runoff by different vegetated and slope buffer strips[J]. Water Science and Technology, 2020, 82(2): 351 − 363. [37] Cao L, Yu X, Liu C, et al. Alteration of soil nitrifiers and denitrifiers and their driving factors during intensive management of Moso bamboo (Phyllostachys pubescens)[J]. Science of the Total Environment, 2020, 705: 135236. doi: 10.1016/j.scitotenv.2019.135236 [38] 翁伯琦, 郑祥洲, 丁 洪, 等. 植被恢复对土壤碳氮循环的影响研究进展[J]. 应用生态学报, 2013, 24(12): 3610 − 3616. [39] King S E, Osmond D L, Smith J, et al. Effects of riparian buffer vegetation and width: A 12-year longitudinal Study[J]. Journal of Environment Quality, 2016, 45(4): 1243. doi: 10.2134/jeq2015.06.0321 [40] Zak D, Stutter M, Jensen H S, et al. An Assessment of the Multifunctionality of Integrated Buffer Zones in Northwestern Europe[J]. Journal of Environment Quality, 2019, 48(2): 362 − 375. doi: 10.2134/jeq2018.05.0216 [41] Sheng L T, Zhang Z Y, Xia J H, et al. The impact of vegetative slope on water flow and pollutant transport through embankments[J]. Sustainability, 9(7): 1128. [42] 周子尧, 吴永波, 余昱莹, 等. 河岸杨树人工林缓冲带对径流水中磷素截留效果的研究[J]. 南京林业大学学报(自然科学版), 2019, 43(2): 100 − 106. [43] 査晶晶, 吴永波, 茆安敏, 等. 河岸人工林缓冲带对径流水磷素的截留效果[J]. 浙江农林大学学报, 2020, 37(4): 639 − 645. [44] Secoges J M, Aust W M, Seiler J R, et al. Streamside management zones affect movement of silvicultural nitrogen and phosphorus fertilizers to piedmont streams[J]. Southern Journal of Applied Forestry, 2013, 37(1): 26 − 35. doi: 10.5849/sjaf.11-032 [45] Monteiro J A F, Kamali B, Srinivasan R, et al. Modelling the effect of riparian vegetation restoration on sediment transport in a human-impacted Brazilian catchment[J]. Ecohydrology, 2016, 9(7): 1289 − 1303. doi: 10.1002/eco.1726 [46] 朱燕琴, 赵志斌, 齐广平. 黄土丘陵区植被类型和降雨对坡面侵蚀产沙的影响[J]. 水土保持学报, 2019, 33(2): 9 − 16. [47] 程昌锦, 张 建, 宋涵晴, 等. 丹江口库区马尾松人工林地表径流氮磷截留效应[J]. 生态学杂志, 2021, 40(6): 1567 − 1573. [48] 吴建强. 不同坡度缓冲带滞缓径流及污染物去除定量化[J]. 水科学进展, 2011, 22(1): 112 − 117. [49] 于国强, 贾莲莲, 朱冰冰, 等. 不同坡位的植被缓冲带对坡面侵蚀产沙来源的影响[J]. 水土保持研究, 2020, 27(6): 9 − 13. [50] Mander Ü, Tournebize J, Tonderski K, et al. Planning and establishment principles for constructed wetlands and riparian buffer zones in agricultural catchments[J]. Ecological Engineering, 2017, 103: 296 − 300. doi: 10.1016/j.ecoleng.2016.12.006 [51] Wang R, Wang Y, Sun S, et al. Discussing on “source-sink” landscape theory and phytoremediation for non-point source pollution control in China[J]. Environmental Science and Pollution Research, 2020, 27: 44797 − 44806. doi: 10.1007/s11356-020-10952-4 [52] Zhang J F. Forestry measures for ecologically controlling non-point source pollution in Taihu Lake Watershed, China[M]. Springer, Germany. [53] Jabłońska E, Winkowska M, Wiśniewska M, et al. Impact of vegetation harvesting on nutrient removal and plant biomass quality in wetland buffer zones[J]. Hydrobiologia, 2021, 848: 3273 − 3289. doi: 10.1007/s10750-020-04256-4 [54] Walton C R, Zak D, Audet J, et al. Wetland buffer zones for nitrogen and phosphorus retention: Impacts of soil type, hydrology and vegetation[J]. Science of The Total Environment, 2020, 727: 138709. doi: 10.1016/j.scitotenv.2020.138709 -