留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同土壤湿度下平菇菌渣施用对土壤酶活性和温室气体排放的影响

汪久翔 邹冬生 王华 刘梦婷 王安岽 张满云

汪久翔, 邹冬生, 王 华, 刘梦婷, 王安岽, 张满云. 不同土壤湿度下平菇菌渣施用对土壤酶活性和温室气体排放的影响[J]. 土壤通报, 2023, 54(1): 151 − 160 doi: 10.19336/j.cnki.trtb.2021070204
引用本文: 汪久翔, 邹冬生, 王 华, 刘梦婷, 王安岽, 张满云. 不同土壤湿度下平菇菌渣施用对土壤酶活性和温室气体排放的影响[J]. 土壤通报, 2023, 54(1): 151 − 160 doi: 10.19336/j.cnki.trtb.2021070204
WANG Jiu-xiang, ZOU Dong-sheng, WANG Hua, LIU Meng-ting, WANG An-dong, ZHANG Man-yun. Effect of Resource Utilization of Spent Pleurotus ostreatus Mushroom Substrate on Soil Enzyme activities and Greenhouse Gas Emissions Under Different Soil Moisture Conditions[J]. Chinese Journal of Soil Science, 2023, 54(1): 151 − 160 doi: 10.19336/j.cnki.trtb.2021070204
Citation: WANG Jiu-xiang, ZOU Dong-sheng, WANG Hua, LIU Meng-ting, WANG An-dong, ZHANG Man-yun. Effect of Resource Utilization of Spent Pleurotus ostreatus Mushroom Substrate on Soil Enzyme activities and Greenhouse Gas Emissions Under Different Soil Moisture Conditions[J]. Chinese Journal of Soil Science, 2023, 54(1): 151 − 160 doi: 10.19336/j.cnki.trtb.2021070204

不同土壤湿度下平菇菌渣施用对土壤酶活性和温室气体排放的影响

doi: 10.19336/j.cnki.trtb.2021070204
基金项目: 国家自然科学基金面上项目(42177026)、国家自然科学基金青年项目(41907085)和湖南省自然科学基金优秀青年科学基金(2021JJ20030)资助
详细信息
    作者简介:

    汪久翔(1995−),男,湖南常德人,硕士研究生,主要从事土壤生态学研究。E-mail: wangjiuxiang@outlook.com

    通讯作者:

    E-mail: manyunzhang@126.com

  • 中图分类号: S154

Effect of Resource Utilization of Spent Pleurotus ostreatus Mushroom Substrate on Soil Enzyme activities and Greenhouse Gas Emissions Under Different Soil Moisture Conditions

  • 摘要:   目的  菌渣被广泛认为是一种优良的植物生长基质和土壤改良剂,向土壤中施用菌渣可以提高土壤微生物活性与温室气体的排放,且土壤水分含量也可以调控菌渣对土壤酶活性与温室气体的排放。通过探究不同土壤湿度条件下平菇(Pleurotus ostreatus)菌渣对土壤酶活性的影响,以阐明不同土壤田间持水量下菌渣施用剂量-土壤温室气体排放-土壤酶活性之间的综合关系。  方法  本研究将平菇菌渣施入土壤并对土壤含水量进行调节,分析了在60%、75%、90%田间持水量条件下和菌渣添加量0.0%、2.5%、5.0%、10.0%时,菌渣添加量对土壤酶活性和温室气体排放的影响。  结果  脲酶、几丁质酶、β-葡糖苷酶与菌渣添加量呈正相关,在菌渣添加量为10.0%时活性最强,且在不同含水量下并无显著性差异。CO2排放量与菌渣添加量呈正相关,在菌渣添加量为10.0%时排放量最高,不同土壤含水量下并为CO2排放量其产生显著影响。N2O排放量在菌渣添加量2.5%和无菌渣添加时与含水量呈正相关,N2O排放量在菌渣添加量5.0%与10.0%时与土壤含水量并无显著性差异,在90%田间持水量条件下,N2O排放量与菌渣添加量呈负相关。菌渣的添加量未对土壤CH4排放产生显著影响。对土壤酶活性和温室气体平均排放量进行皮尔逊分析后发现:三种酶活性对CO2平均排放量有显著影响且呈成正相关,对N2O平均排放量呈显著负相关。  结论  菌渣添加会呈现“双刃剑”效应,菌渣添加虽然提高了土壤酶活性,但是相应也提高了全球增温潜势。综合考虑土壤酶活性与温室气体排放量,本研究中菌渣添加量为2.5%时为最适宜还田添加量。本研究结果为利用菌渣改善土壤酶活性且控制温室气体的排放提供了技术支持,为食用菌菌渣资源化利用提供了理论支持。
  • 图  1  土壤不同含水量条件下菌渣添加对β-葡糖苷酶(a)、脲酶(b)、几丁质酶(c)活性和土壤酶活性几何平均值(d)的影响

    图中不同大写字母表示不同土壤微域含水量间差异显著,不同小写字母表示不同菌渣添加量间差异显著(P < 0.05);SMS 0.0%:无菌渣添加,SMS 2.5%:菌渣添加量为2.5%,SMS 5.0%:菌渣添加量为5.0%,SMS 10.0%:菌渣添加量为10.0%。

    Figure  1.  Soil enzyme activities under different soil moisture contents and spent mushroom substrate addition on β-glucosidase (a), urease (b), chitinase (c) and geometric mean of soil enzyme activity (d)

    图  2  在不同土壤含水量下菌渣添加对CO2 (a)、N2O (b)、CH4 (c)排放速率的影响

    图中不同大写字母表示不同土壤微域含水量间差异显著,不同小写字母表示不同菌渣添加量间差异显著(P < 0.05);SMS 0.0%:无菌渣添加,SMS 2.5%:菌渣添加量为2.5%,SMS 5.0%:菌渣添加量为5.0%,SMS 10.0%:菌渣添加量为10.0%。

    Figure  2.  Emission rates of CO2 (a), N2O (b), CH4 (c) under different soil moisture content and spent mushroom substrate addition

    图  3  在不同土壤含水条件下菌渣添加对CO2 (a)、N2O (b)、CH4 (c)总累加排放量的影响

    图中不同大写字母表示不同土壤微域含水量间差异显著,不同小写字母表示不同菌渣添加量间差异显著(P < 0.05);SMS 0.0%:无菌渣添加,SMS 2.5%:菌渣添加量为2.5% w w–1,SMS 5.0%:菌渣添加量为5.0% w w–1,SMS 10.0%:菌渣添加量为10.0% w w–1

    Figure  3.  Total cumulative emission of CO2 (a), N2O (b), CH4 (c) under different soil moisture contents and spent mushroom substrate addition

    图  4  在不同土壤田间持水量条件下菌渣添加对全球增温潜势的影响

    图中不同大写字母表示不同土壤微域含水量间差异显著,不同小写字母表示不同菌渣添加量间差异显著(P < 0.05);SMS 0.0%:无菌渣添加,SMS 2.5%:菌渣添加量为2.5% w w–1,SMS 5.0%:菌渣添加量为5.0% w w–1,SMS 10.0%:菌渣添加量为10.0% w w–1

    Figure  4.  Global warming potential under different soil water holding capacities and spent mushroom substrate addition

    表  1  含水量与菌渣添加量对土壤酶活性和气体排放影响的方差分析

    Table  1.   Two-way ANOVA revealed the effects of soil moisture and spent mushroom substrate on gas emissions and soil enzyme activities

    影响因素
    Factor
    β-葡糖苷酶
    β-glucosidase
    脲酶
    Urease
    几丁质酶
    Chitinase
    土壤酶活性几
    何平均值
    Mean soil enzyme
    activity
    CO2总累加
    排放量
    CO2 releasing
    accumulated
    amount
    CH4总累加
    排放量
    CH4 releasing
    accumulated
    amount
    N2O总累加
    排放量
    N2O releasing
    accumulated
    amount
    全球增
    温潜势
    Global warming
    potential
    菌渣 53.829** 119.996** 22.983** 0.682** 160.212** 1.875 20.150** 172.369**
    土壤含水量 24.268** 0.885 1.260 20.600 0.828 1.130 19.451** 1.373
    菌渣 × 土壤含水量 4.640** 1.041 1.214 49.196** 0.468 1.180 7.086** 0.777
      注:表中数值为F值,***分别表示相关性达到P < 0.05、P < 0.01。
    下载: 导出CSV

    表  2  土壤酶活性与温室气体平均排放量的皮尔逊相关系数

    Table  2.   The coefficients of Pearson’s correlations bacterial the soil enzymatic activities and greenhouse gas average emissions

    脲酶
    Urease
    几丁质
    Chitinase
    CO2CH4N2O
    β-葡糖苷酶 0.733** 0.755** 0.692** −0.46 −0.586**
    脲酶 0.712** 0.654** 0.510 −0.472**
    几丁质 0.924** 0.208 −0.440**
    CO2 0.257 −0.434**
    CH4 −0.214
      注:表格中的数字表示皮尔逊相关系数(r),***分别表示相关性达到P < 0.05、P < 0.01。
    下载: 导出CSV
  • [1] 陈先锋. 中国食用菌产业发展的战略研究与对策分析[J]. 中国食用菌, 2019, 38(12): 74 − 76.
    [2] Semple K T, Reid B J. Impact of composting strategies on the treatment of soils contaminated with organic pollutants[J]. Environmental Pollution, 2001, 112(02): 269 − 283. doi: 10.1016/S0269-7491(00)00099-3
    [3] Lou Z, Sun Y, Zhou X, et al. Composition variability of spent mushroom substrates during continuous cultivation, composting process and their effects on mineral nitrogen transformation in soil[J]. Geoderma, 2017, 307: 30 − 37. doi: 10.1016/j.geoderma.2017.07.033
    [4] Phan C W, Sabaratnam V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes[J]. Applied Microbiology and Biotechnology, 2012, 96(04): 863 − 873. doi: 10.1007/s00253-012-4446-9
    [5] Williams B C, McMullan J T, McCahey S. An initial assessment of spent mushroom compost as a potential energy feedstock[J]. Bioresource Technology, 2001, 79(3): 227 − 230. doi: 10.1016/S0960-8524(01)00073-6
    [6] Kadiri M, Mustapha Y. The use of spent mushroom substrate of L. subnudus Berk as a soil condition for vegetables[J]. Bayero Journal of Pure and Applied Sciences, 2010, 3(02): 16 − 19.
    [7] 翁伯琦, 廖建华, 罗 涛, 等. 发展农田秸秆菌业的技术集成与资源循环利用管理对策[J]. 中国生态农业学报, 2009, 17(5): 1007 − 1011.
    [8] 吴海勇, 李明德, 刘琼峰, 等. 农业有机废弃物还田的生态经济效益研究[J]. 土壤, 2012, 44(5): 769 − 775.
    [9] 张淑琴. 食用菌菌渣配制生物有机肥在园林绿化中的应用[J]. 中国食用菌, 2020, 39(11): 196 − 199.
    [10] 石思博, 王旭东, 叶正钱, 等. 菌渣化肥配施对稻田土壤微生物量碳氮和可溶性碳氮的影响[J]. 生态学报, 2018, 38(23): 8612 − 8620.
    [11] 金亚波, 寇智瑞, 韦建玉, 等. 有机物料对黄壤烟田土壤团聚体组成及土壤肥力的影响[J]. 西南大学学报(自然科学版), 2020, 42(8): 9 − 16.
    [12] 胡留杰, 李 燕, 田时炳, 等. 菌渣还田对菜地土壤理化性状、微生物及酶活性的影响研究[J]. 中国农学通报, 2020, 36(1): 98 − 104.
    [13] Könneke M, Bernhard A E, José R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058): 543 − 546. doi: 10.1038/nature03911
    [14] Stanford G, Epstein E. Nitrogen mineralization-water relations in soils[J]. Soil Science Society of America Journal, 1974, 38(1): 289 − 299.
    [15] 赵长盛, 胡承孝, 孙学成, 等. 温度和水分对华中地区菜地土壤氮素矿化的影响[J]. 中国生态农业学报, 2012, 20(7): 861 − 866.
    [16] 袁娜娜. 室内环刀法测定土壤田间持水量[J]. 中国新技术新产品, 2014, (9): 184.
    [17] Methods of soil analysis, Part 2: Microbiological and biochemical properties[M]. John Wiley and Sons, 2020.
    [18] Parham J A, Deng S P. Detection, quantification and characterization of β-glucosaminidase activity in soil[J]. Soil Biology and Biochemistry, 2000, 32(8-9): 1183 − 1190. doi: 10.1016/S0038-0717(00)00034-1
    [19] Turner B L, Hopkins D W, Haygarth P M, et al. β-Glucosidase activity in pasture soils[J]. Applied Soil Ecology, 2002, 20(2): 157 − 162. doi: 10.1016/S0929-1393(02)00020-3
    [20] Zhang M Y, Wang W J, Tang L, et al. Impacts of prescribed burning on urban forest soil: Minor changes in net greenhouse gas emissions despite evident alterations of microbial community structures[J]. Applied Soil Ecology, 2021: 158.
    [21] Hinojosa M B, García-Ruíz R, Benjamín V, et al. Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcóllar toxic spill[J]. Soil Biology and Biochemistry, 2004, 36(10): 1637 − 1644. doi: 10.1016/j.soilbio.2004.07.006
    [22] 祁 乐, 高 明, 周 鹏, 等. 菌渣还田量对紫色水稻土净温室气体排放的影响[J]. 环境科学, 2018, 39(6): 2827 − 2836.
    [23] 魏海龙, 周 伟, 庄晓伟, 等. 3种木腐菌菌棒出菇前后化学成分的差异性[J]. 中国食用菌, 2017, 36(1): 36 − 40.
    [24] 王学敏, 刘 兴, 郝丽英, 等. 秸秆还田结合氮肥减施对玉米产量和土壤性质的影响[J]. 生态学杂志, 2020, 39(2): 507 − 516.
    [25] 马星竹, 周宝库, 郝小雨. 长期不同施肥条件下大豆田黑土酶活性研究[J]. 大豆科学, 2016, 35(1): 96 − 99.
    [26] 张 影, 刘 星, 焦瑞锋, 等. 生物质炭与有机物料配施的土壤培肥效果及对玉米生长的影响[J]. 中国生态农业学报, 2017, 25(9): 1287 − 1297.
    [27] Nayak D R, Babu Y J, Adhya T K. Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition[J]. Soil Biology and Biochemistry, 2007, 39(8): 1897 − 1906. doi: 10.1016/j.soilbio.2007.02.003
    [28] 高日平, 赵思华, 刁生鹏, 等. 秸秆还田对黄土风沙区土壤微生物、酶活性及作物产量的影响[J]. 土壤通报, 2019, 50(6): 1370 − 1377.
    [29] 张黎明, 邓小华, 周米良, 等. 不同种类绿肥翻压还田对植烟土壤微生物量及酶活性的影响[J]. 中国烟草科学, 2016, 37(4): 13 − 18.
    [30] 林贤锐, 孙 萍, 沈建生. 基施食用菌菌渣在葡萄栽培中的肥效试验[J]. 浙江农业科学, 2017, 58(3): 426 − 427.
    [31] 张 威, 张 明, 白 震, 等. 土壤中几丁质酶的研究进展[J]. 土壤通报, 2007, 38(3): 569 − 575.
    [32] Ekenler M, Tabatabai M A. Tillage and residue management effects on β-glucosaminidase activity in soils[J]. Soil Biology and Biochemistry, 2003, 35(6): 871 − 874. doi: 10.1016/S0038-0717(03)00094-4
    [33] Li F L, Liu M, Li Z P, et al. Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns[J]. Applied Soil Ecology, 2013, 64: 1 − 6. doi: 10.1016/j.apsoil.2012.10.006
    [34] Dick Richard P A. Review: long-term effects of agricultural systems on soil biochemical and microbial parameters[J]. Agriculture, Ecosystems and Environment, 1992, 40(1-4): 25 − 36. doi: 10.1016/0167-8809(92)90081-L
    [35] 刘杏认, 张 星, 张晴雯, 等. 施用生物炭和秸秆还田对华北农田CO2、N2O排放的影响[J]. 生态学报, 2017, 37(20): 6700 − 6711.
    [36] 刘志伟, 朱孟涛, 郭文杰, 等. 秸秆直接还田与炭化还田下土壤有机碳稳定性和温室气体排放潜力的对比研究[J]. 土壤通报, 2017, 48(6): 1371 − 1378.
    [37] 冯晓赟, 万 鹏, 李 洁, 等. 秸秆还田与氮肥配施对中南地区稻田土壤固碳和温室气体排放的影响[J]. 农业资源与环境学报, 2016, 33(6): 508 − 517.
    [38] 张 冉, 赵 鑫, 濮 超, 等. 中国农田秸秆还田土壤N2O排放及其影响因素的Meta分析[J]. 农业工程学报, 2015, 31(22): 1 − 6.
    [39] 裴淑玮, 张圆圆, 刘俊锋, 等. 施肥及秸秆还田处理下玉米季温室气体的排放[J]. 环境化学, 2012, 31(4): 407 − 414.
    [40] 邹建文. 稻麦轮作生态系统温室气体(CO2、CH4和N2O)排放研究[D]. 南京农业大学, 2005.
    [41] 邹建文, 黄 耀, 宗良纲, 等. 不同种类有机肥施用对稻田CH4和N2O排放的综合影响[J]. 环境科学, 2003, 24(4): 7 − 12.
    [42] 李春喜, 李斯斯, 邵 云, 等. 有机物料还田对冬小麦农田土壤温室气体排放影响的研究[J]. 中国生态农业学报(中英文), 2019, 27(6): 815 − 824.
    [43] Wang Z P, Delaune R D, Patrick Jr W H, et al. Soil redox and pH effects on methane production in a flooded rice soil[J]. Soil Science Society of America Journal, 1993, 57(2): 382 − 385. doi: 10.2136/sssaj1993.03615995005700020016x
    [44] 王明星. 中囯稻田甲烷排放[M]. 北京: 科学出版公司, 2001.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  38
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 录用日期:  2022-07-12
  • 修回日期:  2022-07-11
  • 网络出版日期:  2023-02-02
  • 刊出日期:  2023-02-06

目录

    /

    返回文章
    返回