Characteristics of Soil CO2 Emission and Carbon Balance in Greenhouse Soil under Different Fertilization Patterns
-
摘要:
目的 探讨不同施肥模式对土壤CO2排放特征及碳平衡的影响,为设施土壤固碳减排和合理施肥提供数据支持。 方法 以“粉太郎”番茄为试材,基于设施微区试验,利用LI-8100A土壤碳通量自动测定仪观测了不同施肥模式[50%化肥N + 50%有机肥N + 改良剂组(HYG)、50%化肥N + 50%有机肥N组(HY)、100%有机肥N组(Y)、100%化肥N组(H)和不施肥处理组(CK)]土壤CO2的排放特征,探讨了土壤含水量、温度、pH、全氮、微生物生物量碳、土壤孔隙度、土壤有机质等因子对CO2排放量的影响。 结果 在番茄生长初期和施肥后,设施土壤CO2排放速率均表现为先升高后下降的趋势,土壤含水量和土壤温度的双因素复合模型可以解释76.0%(P < 0.01)土壤CO2排放速率的变化,不同施肥模式下造成土壤水热环境的变化会显著影响土壤CO2排放速率。整个生育期,不同施肥模式之间土壤CO2排放累积量差异显著(P < 0.05),相比CK处理,施入肥料的H、Y、HY和HYG处理的土壤CO2排放累积量分别提高了26.7%、83.2%、47.3%和44.2%。相关分析表明,土壤CO2排放累积量与土壤pH、全氮、微生物量碳、土壤孔隙度和有机质均呈极显著正相关关系(P < 0.01)。HYG处理相较其余各施肥处理可以显著提高番茄产量和总生物量,提高幅度分别为9.4% ~ 38.2%和9.0% ~ 32.9%。HYG处理相较当前设施土壤施肥方式(HY处理)显著降低土壤碳释放总量和作物碳排放效率,降幅分别为2.2%和10.9%,同时HYG处理可以使生态系统固碳潜力增加(11.5%)。 结论 从固碳减排的角度,50%化肥N + 50%有机肥N + 改良剂处理是辽宁地区设施番茄栽培适宜的施肥模式。 Abstract:Objective The effect of different fertilization patterns on soil CO2 emission characteristics and carbon (C) balance were discussed, which provided data support for C sequestration and emission reduction of greenhouse soil and reasonable fertilization. Method "fentailang" tomato as the tested material, the emission characteristics of soil CO2 under different fertilization patterns [50% chemical fertilizer N + 50% organic fertilizer N + modifier group (HYG), 50% chemical fertilizer N + 50% organic fertilizer N group (HY), 100% organic fertilizer N group (Y), 100% chemical fertilizer N group (H) and no fertilization treatment group (CK)] were observed with LI-8100A automatic soil C flux tester based on the facility micro zone test. The effects of soil water content, temperature , pH, total nitrogen, microbial biomass carbon (MBC), soil porosity and soil organic matter (SOM) on CO2 emission were discussed. Result The results showed that the CO2 emission rate of greenhouse soil increased first and then decreased under different fertilization patterns at the initial stage and after fertilization of tomato. In terms of soil CO2 emission accumulation, there were significant differences among different fertilization patterns (P < 0.05). Compared with CK treatment, the cumulative CO2 emission of H, Y, HY and HYG treatments increased by 26.7%, 83.2%, 47.3% and 44.2% respectively. The two factors composite model of soil water content and soil temperature could explain the change of soil CO2 emission rate of 76.0% (P < 0.01), indicating that the change of soil hydrothermal environment under different fertilization patterns would significantly affect the soil CO2 emission rate. Correlation analysis showed that the cumulative amount of soil CO2 emission had a very significant positive correlation with soil pH, total nitrogen, MBC and soil porosity (P < 0.01), and a significant positive correlation with SOM (P < 0.05). Compared with other fertilization treatments, HYG treatment could significantly improve tomato yield and total biomass by 9.4% - 38.2% and 9.0% - 32.9% respectively. Compared with the current main fertilization patterns of greenhouse soil (HY treatment), HYG treatment could significantly reduce the total soil C release and crop C emission efficiency by 2.2% and 10.9%, and HYG treatment could also increase the ecosystem C sequestration potential by 11.5%. Conclusion From the perspective of C sequestration and emission reduction, 50% chemical fertilizer N + 50% organic fertilizer N + modifier treatment is a better fertilization pattern for greenhouse cultivation of "fentailang" tomato in Liaoning Province. -
Key words:
- Soil CO2 emission /
- Carbon balance /
- Facility tomato /
- Soil temperature /
- Soil water content
-
表 1 不同施肥处理的肥料施用方式及用量
Table 1. Fertilizer application methods and dosages of different fertilization treatments (kg hm-2)
处理
Treatment有机物料种类与用量
Type and dosage of organic materials化肥
Chemical fertilizer改良剂
Modifier有机肥
Organic fertilizer有机碳总投入量
Total input of organic carbonN P2O5 K2O CK 不施肥 − − − − − − H 100%化肥N组 300.0 150.0 450.0 − − − Y 100%有机肥N − − − − 14 925.4 3 716.4 HY 50%化肥N + 50%有机肥N 150.0 75.0 225.0 − 7 462.7 1 858.2 HYG 50%化肥N + 50%有机肥N + 改良剂 150.0 75.0 225.0 1 800 7 462.7 1 858.2 表 2 土壤CO2排放累积量与其理化指标的相关分析
Table 2. Correlation analysis of soil CO2 cumulative emission and its physical and chemical indices
CE AN AP AK pH TN SOM MBC MBN BD SP CE 1 0.354 0.285 0.189 0.791** 0.760** 0.603* 0.824** 0.355 −0.270 0.966** AN 1 0.979** 0.942** 0.791** 0.858** 0.782** 0.688* 0.401 −0.896** 0.262 AP 1 0.915** 0.727** 0.804** 0.684* 0.588* 0.490 −0.846** 0.191 AK 1 0.731** 0.779** 0.820** 0.650* 0.105 −0.972** 0.164 pH 1 0.980** 0.930** 0.963** 0.256 −0.795** 0.755** TN 1 0.910** 0.943** 0.342 −0.801** 0.715** SOM 1 0.945** −0.049 −0.892** 0.612* MBC 1 0.093 −0.728** 0.822** MBN 1 0.000 0.170 BD 1 −0.253 SP 1 注:*和**分别代表显著差异(P<0.05)和差异极显著(P<0.01);表中CE表示土壤CO2排放累积量;AN表示碱解氮;AP表示速效磷;AK表示速效钾;TN表示全氮;SOM表示有机质;MBC表示微生物量碳;MBN表示微生物量氮;BD表示土壤容重;SP表示土壤孔隙度。 表 3 不同施肥模式对设施土壤作物产量和碳排放效率的影响
Table 3. Effects of different fertilization patterns on crop yield and carbon emission rates in protected soil
处理
TreatmentY
(kg hm−2)NPP
(kg hm−2)CEC
(kg hm−2)CEE
(kg kg−1)CK 8166.67 ± 107.61 e 12868.47 ± 104.84 e 858.80 ± 8.58 d 0.39 ± 0.01 c H 9069.44 ± 143.46 d 14322.62 ± 138.11 d 1088.20 ± 13.9 c 0.44 ± 0.01 b Y 9722.22 ± 93.82 c 15266.52 ± 63.45 c 1573.76 ± 46.34 a 0.60 ± 0.02 a HY 10312.50 ± 161.27 b 15692.81 ± 117.49 b 1265.31 ± 31.29 b 0.46 ± 0.01 b HYG 11284.72 ± 215.28 a 17104.07 ± 193.38 a 1238.53 ± 18.65 b 0.41 ± 0.01 c 注:同列不同字母表示处理间差异显著(P<0.05)。下同。Y为番茄产量;NPP为总生物量;CEC为土壤碳排放量;CEE为作物碳排放效率。 表 4 不同施肥模式生态系统碳平衡
Table 4. Effects of different fertilization patterns on carbon balance of facility soil system
处理
TreatmentNPPC
(kg hm−2)RmC
(kg hm−2)NEPC
(kg hm−2)NPPC/CEC比值
NPPC/CEC ratioCK 5790.81 ± 47.17 e 742.85 ± 7.42 d 5047.95 ± 47.4 d 7.80 ± 0.1 a H 6445.18 ± 62.15 d 941.29 ± 12.03 c 5503.89 ± 57.05 c 6.85 ± 0.08 c Y 6869.94 ± 28.55 c 1361.30 ± 40.08 a 5508.63 ± 43.86 c 5.05 ± 0.15 e HY 7061.76 ± 52.87 b 1094.49 ± 27.06 b 5967.27 ± 36.1 b 6.45 ± 0.12 d HYG 7696.84 ± 87.02 a 1071.33 ± 16.14 b 6625.51 ± 92.57 a 7.19 ± 0.15 b 注:NPPC为净初级生产力固碳量;RmC为微生物异氧呼吸;NEPC为净生态系统生产力,当NEPC > 0时,表示该小区系统为CO2的吸收“汇”;反之为CO2的排放“源”;NPPC/CEC为固碳潜力。 -
[1] 王 婧, 刘 毅, 杨东旭. 探寻我国碳汇分布: 从大气CO2探测入手[J]. 科学通报, 2021, 66(7): 709 − 710. [2] 万 盛, 秦天玲, 宋新山, 等. 冬小麦田春灌前后CO2排放通量的日变化特征及对比分析[J]. 灌溉排水学报, 2019, 38(6): 80 − 84. [3] Prather M, Ehhalt D, Dentener F, et al. Atmospheric chemistry and greenhouses gases[C]//Related information: Working Group I: the Scientific Basis, 2001: 241-280. [4] 谢 婷, 张 慧, 苗 洁, 等. 湖北省农田生态系统温 + 室气体排放特征与源/汇分析[J]. 农业资源与环境学报, 2021, 38(5): 839 − 848. [5] Liu S W, Ji C, Wang C, et al. Climatic role of terrestrial ecosystem under elevated CO2: A bottom-up greenhouse gases budget[J]. Ecology Letters, 2018, 21(7): 1108 − 1118. doi: 10.1111/ele.13078 [6] 李世楠. 我国设施蔬菜产业发展现状与未来发展趋势探讨[J]. 中国林副特产, 2019, (1): 84 − 85. [7] Iqbal J, Hu R, Feng M, et al. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China[J]. Agriculture, Ecosystems & Environment, 2010, 137(3-4): 294 − 307. [8] 赵江涛, 崔 方, 张小平, 等. 设施农业土壤改良浅谈[J]. 西北园艺(综合), 2021, (1): 36 − 37. [9] 王亚芳, 赵以铭, 李英杰, 等. 秸秆和生物炭添加量及比例对华北下沉式设施菜田土壤CO2排放的影响[J]. 安徽农业科学, 2021, 49(21): 85 − 90. doi: 10.3969/j.issn.0517-6611.2021.21.021 [10] 曹文超, 宋 贺, 陈吉吉, 等. 水分和有机肥投入对设施菜田土壤N2O, N2和CO2排放及产物比的影响[J]. 土壤通报, 2018, 49(2): 469 − 477. [11] 王春新, 于 鹏, 张玉玲, 等. 氮肥与有机肥配施对设施土壤呼吸的影响[J]. 土壤通报, 2017, 48(1): 146 − 154. [12] 韩昌东, 叶旭红, 马 玲, 等. 不同灌水下限设施番茄土壤CO2排放特征及其影响因素研究[J]. 灌溉排水学报, 2020, 39(2): 46 − 55. [13] 张 倩, 牛文全, 杜娅丹, 等. 加气灌溉对不同施氮水平的设施甜瓜土壤CO2和N2O排放的影响[J]. 应用生态学报, 2019, 30(4): 1319 − 1326. [14] 于振莲. 微生物菌肥在农业生产中的价值和应用策略探究[J]. 南方农业, 2020, 14(8): 197 − 198. [15] Hou J Q, Li M X, Mao X H, et al. Response of microbial community of organic-matter-impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste[J]. PLoS One, 2017, 12(4): e0175715. doi: 10.1371/journal.pone.0175715 [16] 张晓龙, 沈 冰, 权 全, 等. 渭河平原农田冬小麦土壤呼吸及其影响因素[J]. 应用生态学报, 2016, 27(8): 2551 − 2560. [17] 中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定法[M]. 北京: 科学出版社, 1978. [18] 鲍士旦. 土壤农化分析3版[M]. 北京: 中国农业出版社, 2000. [19] 庄海艳. 冻融作用对黑土耕层土壤有机碳组分及有机碳矿化的影响[D]. 哈尔滨: 东北林业大学, 2018. [20] 韩冰. 灌水控制下限对设施土壤N2O排放及微生物功能多样性的影响[D]. 沈阳: 沈阳农业大学, 2017. [21] 张俊丽. 耕作和施氮措施下旱作夏玉米田土壤呼吸与土壤碳平衡研究[D]. 陕西: 西北农林科技大学, 2014. [22] 殷 文, 史倩倩, 郭 瑶, 等. 秸秆还田、一膜两年用及间作对农田碳排放的短期效应[J]. 中国生态农业学报, 2016, 24(6): 716 − 724. [23] 谢立勇, 叶丹丹, 郭李萍, 等. 不同施肥方式对东北黑土农田土壤温室气体排放的影响[C]//S3聚焦气候变化, 探索低碳未来: 中国气象协会 2012年学术年会会议论文集. 北京: 气象出版社, 2012: 388 − 396. [24] 郭耀东, 邬 刚, 武小平, 等. 不同施肥方式对玉米产量和温室气体排放的影响[J]. 山西农业科学, 2012, 40(10): 1067 − 1070. doi: 10.3969/j.issn.1002-2481.2012.10.13 [25] 陈述悦, 李 俊, 陆佩玲, 等. 华北平原麦田土壤呼吸特征[J]. 应用生态学报, 2004, (9): 1552 − 1560. doi: 10.3321/j.issn:1001-9332.2004.09.013 [26] 孙 婧, 田永强, 高丽红, 等. 秸秆生物反应堆与菌肥对温室番茄土壤微环境的影响[J]. 农业工程学报, 2014, 30(6): 153 − 164. doi: 10.3969/j.issn.1002-6819.2014.06.019 [27] Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature, 1991, 351(6324): 304 − 306. doi: 10.1038/351304a0 [28] 白雪原, 红 梅, 杨彦明, 等. 施肥对河套灌区土壤CO2和N2O排放的影响[J]. 灌溉排水学报, 2017, 36(7): 66 − 70. [29] 郭 强, 于玲玲, 韩静然. 保护性耕作对玉米田土壤呼吸及水分利用效率的影响[J]. 灌溉排水学报, 2018, 37(11): 57 − 62. [30] 李良林, 王玉君. 温室培育番茄壮苗措施[J]. 农村科学实验, 2002, (1): 21. [31] 李贤红. 滨海盐碱地垦殖土壤呼吸特征及其影响因子研究[D]. 泰安: 山东农业大学, 2018. [32] 王晓娇, 蔡立群, 齐 鹏, 等. 培肥措施对旱地农田土壤CO2排放和碳库管理指数的影响[J]. 草业学报, 2021, 30(2): 32 − 45. doi: 10.11686/cyxb2020226 [33] 于晓娜, 周涵君, 张晓帆, 等. 基于盆栽试验的施用烟秆生物炭对植烟土壤呼吸速率的影响[J]. 烟草科技, 2017, 50(12): 29 − 37. [34] 陈 蕾, 董希斌. 抚育间伐强度对兴安落叶松林初冬时期土壤呼吸及理化性质的影响[J]. 东北林业大学学报, 2020, 48(6): 146 − 151. doi: 10.3969/j.issn.1000-5382.2020.06.028 [35] 李 艳, 陈 义, 唐 旭, 等. 长期不同施肥模式下南方水稻土有机碳的平衡特征[J]. 浙江农业学报, 2018, 30(12): 2094 − 2101. doi: 10.3969/j.issn.1004-1524.2018.12.15 -