Determination of Reasonable Sample Density for Spatial Interpolation of Soil Organic Matter in Cultivated Land of County Region Based on Conditional Latin Hypercube Sampling
-
摘要:
目的 采样密度与耕地土壤有机质(SOM)的空间预测精度密切相关,为提高耕地SOM空间预测精度,需要确定合理的采样密度。 方法 以湖南省岳阳县为例,用R语言设计了条件拉丁超立方体抽样(cLHS)方案,从7399个(采样密度为14.82个 km−2)耕地土壤样本中独立抽取不同采样密度的8个训练集(采样密度分别为10.01、7.41、3.70、1.85、0.93、0.46、0.23、0.12个 km−2),为了兼顾样本特征空间与地理空间,地形部位、坡度、成土母质、土壤类型、乡镇和经纬度等信息被添加到了cLHS中。结合普通克里格方法,分析和探讨了不同采样密度的耕地SOM空间预测效果。 结果 不同采样密度训练集SOM均值高于湖南省平均水平,具有中等程度变异,描述性统计结果差异不大,各训练集对总体均具有较强的代表性;半方差函数模型均为指数模型,具有较好的半方差结构(结构性比例:87.5% ~ 94.5%),空间相关性较强,变程与拟合优度呈现出正相关关系(相关系数r = 0.96),与结构性比例则表现为负相关关系(相关系数r = −0.79);在采样密度为3.70个 km−2时,探测到的SOM变异结构中结构性组分最完整,精度最佳。当采样密度达到1.85个 km−2以上时可较稳健地揭示其空间结构特征,继续增加采样密度并不能大幅提升预测精度。 结论 考虑预测精度要求和工作成本,与研究区自然地理条件相似的地区将耕地土壤采样密度控制在1.85个 km−2以上可获得预期的效果。 Abstract:Objective Sampling density is closely related to the spatial prediction accuracy of soil organic matter (SOM) in cultivated land. Determining the reasonable sampling density of SOM spatial prediction in cultivated land is beneficial to scientifically guide soil sampling and save work cost. Method In this study, taking Yueyang County of Hunan Province as an example, the conditional Latin Hypercube Sampling (cLHS) scheme was designed with R language. Eight training sets with different sampling densities (10.01, 7.41, 3.70, 1.85, 0.93, 0.46, 0.23 and 0.12 samples per km2) were independently extracted from 7399 cultivated land soil samples (the sampling density was 14.82 samples per km2). In order to take into account the sample feature space and geographical space, the topographic position, slope, soil parent material, soil type, township, longitude and latitude and other information were added to the cLHS. Combined with ordinary Kriging method, the spatial prediction effect of SOM in cultivated land with different sampling densities was analyzed and discussed. Result The results showed that the average of SOM in the training set with different sampling densities was higher than the average level of Hunan Province. Each training set had strong representativeness on the whole. Semi-variance function models were exponential models, with good semi-variance structure (structural ratio: 87.5%-94.5%) and strong spatial correlation. The range was positively correlated with the goodness of fit (correlation coefficient r = 0.96), and negatively correlated with the structural ratio (correlation coefficient r = −0.79). When the sampling density was 3.70 samples per km2, the structural components in the detected variation structure of SOM was the most complete, and the accuracy was the best. Further increasing the sampling density was not necessarily conducive to the identification of structural continuous components. When the sampling density was lower than 0.46 samples per km2, the semi-variance function model could not be effectively inferred, and the accuracy was poor. When the sampling density reached more than 1.85 samples per km2, the spatial structure characteristics could be revealed more robustly. Continuously increasing sampling density would not significantly improve prediction accuracy. Conclusion Considering the requirements of prediction accuracy and working cost, in areas similar to the natural and geographical conditions of the study area, the expected effect can be obtained by controlling the soil sampling density of cultivated land above 1.85 samples per km2. -
表 1 不同采样密度下有机质含量统计特征
Table 1. Descriptive statistics of soil organic matter contents as affected by sampling density
采样密度(个 km−2)
Sampling density样点数(个)
Sampling number均值(g kg−1)
Mean中值(g kg−1 )
Median标准偏差(g kg−1)
Standard deviation偏度
Skewness峰度
Kurtosis变异系数(%)
CV10.01 5000 33.16 33.40 8.49 −0.01 0.34 25.61 7.41 3700 33.06 33.30 8.51 −0.04 0.38 25.75 3.70 1850 33.13 33.60 8.65 −0.09 0.33 26.13 1.85 925 33.31 33.80 8.60 −0.08 0.64 25.82 0.93 463 33.68 33.20 8.37 0.24 1.07 24.85 0.46 232 32.90 33.20 8.36 −0.21 0.35 25.42 0.23 116 32.86 34.85 9.23 −0.40 −0.16 28.08 0.12 58 31.72 33.15 8.16 −0.50 0.47 25.73 表 2 不同采样密度下有机质含量的半方差模型及其参数
Table 2. Semivariance models and parameters of soil organic matter contents as affected by sampling density
采样密度(个 km−2)
Sampling density样点数(个)
Sampling number最优模型
Optimal fitting model变程(km)
Range块金值
C0基台值
C + C0结构性比例(%)
1−C0/(C + C0)拟合优度
R2残差平方和
RSS10.01 5000 指数模型 8.52 5.30 70.57 92.50 0.85 4.38 7.41 3700 指数模型 9.00 5.70 71.25 92.00 0.90 3.65 3.70 1850 指数模型 8.70 5.10 72.84 93.00 0.83 5.95 1.85 925 指数模型 10.74 6.70 73.49 90.90 0.92 5.53 0.93 463 指数模型 7.38 5.10 68.47 92.60 0.69 5.11 0.46 232 指数模型 10.80 9.10 72.60 87.50 0.99 0.35 0.23 116 指数模型 4.08 4.50 81.49 94.50 0.03 6.54 0.12 58 指数模型 1.10 4.30 61.15 93.00 0.01 76.60 -
[1] 史 舟, 李 艳. 地统计学在土壤学中的应用[M]. 北京: 中国农业出版社, 2006. [2] 宋小青, 欧阳竹. 耕地多功能内涵及其对耕地保护的启示[J]. 地理科学进展, 2012, 31(7): 859 − 868. doi: 10.11820/dlkxjz.2012.07.004 [3] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2010. [4] Ondrasek G, Begić H B, Zovko M, et al. Biogeochemistry of soil organic matter in agroecosystems & environmental implications[J]. The Science of the total environment, 2019, 658: 1559 − 1573. doi: 10.1016/j.scitotenv.2018.12.243 [5] 黄思华, 濮励杰, 解雪峰, 等. 面向数字土壤制图的土壤采样设计研究进展与展望[J]. 土壤学报, 2020, 57(2): 259 − 272. [6] Vaysse K, Lagacherie P. Evaluating Digital Soil Mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France)[J]. Geoderma Regional, 2015, 4: 20 − 30. doi: 10.1016/j.geodrs.2014.11.003 [7] 杨 琳. 目的性采样下样本设计与制图精度的关系研究——以数字土壤制图为例[D]. 北京: 中国科学院地理科学与资源研究所, 地图学与地理信息系统, 2009. [8] 朱阿兴, 杨 琳, 樊乃卿, 等. 数字土壤制图研究综述与展望[J]. 地理科学进展, 2018, 37(1): 66 − 78. [9] 苏晓燕, 赵永存, 杨 浩, 等. 不同采样点数量下土壤有机质含量空间预测方法对比[J]. 地学前缘, 2011, 18(6): 34 − 40. [10] 海 南, 赵永存, 田 康, 等. 不同样点数量对土壤有机质空间变异表达的影响[J]. 土壤学报, 2015, 52(4): 783 − 791. [11] Long J, Liu Y L, Xing S H, et al. Effects of sampling density on interpolation accuracy for farmland soil organic matter concentration in a large region of complex topography[J]. Ecological Indicators, 2018, 93: 562 − 571. doi: 10.1016/j.ecolind.2018.05.044 [12] 巫振富, 赵彦锋, 程道全, 等. 样点数量与空间分布对县域尺度土壤属性空间预测效果的影响[J]. 土壤学报, 2019, 56(6): 1321 − 1335. doi: 10.11766/trxb201811210470 [13] Lawrence P G, Roper W, Morris T F, et al. Guiding soil sampling strategies using classical and spatial statistics: A review[J]. Agronomy Journal, 2020, 112(1): 493 − 510. doi: 10.1002/agj2.20048 [14] Biswas A, Zhang Y K. Sampling designs for validating digital soil maps: A review[J]. Pedosphere, 2018, 28(1): 1 − 15. doi: 10.1016/S1002-0160(18)60001-3 [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [16] 刘付程, 史学正, 于东升, 等. 基于地统计学和GIS的太湖典型地区土壤属性制图研究−以土壤全氮制图为例[J]. 土壤学报, 2004, 41(1): 20 − 27. doi: 10.3321/j.issn:0564-3929.2004.01.004 [17] McKay M D, Beckman R J, Conover W J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239 − 245. [18] Minasny B, McBratney A B. A conditioned latin hypercube method for sampling in the presence of ancillary information[J]. ComputGeosci, 2006, 32: 1378 − 1388. [19] Mulder V L, Bruin S D, Schaepman M E. Representing major soil variability at regional scale by constrained Latin Hypercube Sampling of remote sensing data[J]. International Journal of Applied Earth Observation and Geoinformation. 2013, 21: 301-310. [20] Burgess T M, Webster R. Optimal interpolation and isarithmic mapping of soil properties. I The semi-variogram and punctual kriging[J]. Journal of Soil Science, 1980, 31(2): 315 − 331. doi: 10.1111/j.1365-2389.1980.tb02084.x [21] 蒋勇军, 章 程, 袁道先. 岩溶区土壤肥力的时空变异及影响因素−以云南小江流域为例[J]. 生态学报, 2008, 28(5): 2288 − 2299. doi: 10.3321/j.issn:1000-0933.2008.05.046 [22] Atta H A. Assessment and geographic visualization of salinity of Tigris and Diyala Rivers in Baghdad City[J]. Environmental Technology & Innovation, 2020, 17: 100538. [23] Martínez-Murillo J F, Hueso-González P, Ruiz-Sinoga J D. Topsoil moisture mapping using geostatistical techniques under different Mediterranean climatic conditions[J]. The Science of the total environment, 2017, 595: 400 − 412. doi: 10.1016/j.scitotenv.2017.03.291 [24] Ersahin S. Comparing ordinary kriging and cokriging to estimate infiltration rate[J]. Soil Science Society of America Journal, 2003, 67(6): 1848 − 1855. doi: 10.2136/sssaj2003.1848 [25] 胡碧峰, 王佳昱, 傅婷婷, 等. 空间分析在土壤重金属污染研究中的应用[J]. 土壤通报, 2017, 48(4): 1014 − 1024. [26] 李海滨, 林忠辉, 刘苏峡. Kriging方法在区域土壤水分估值中的应用[J]. 地理研究, 2001, 20(4): 446 − 452. doi: 10.3321/j.issn:1000-0585.2001.04.008 [27] 王政权. 地统计学及在生态学中的应用[M]. 北京: 科学出版社, 1999. [28] 胡瑞芝, 王书伟, 林静慧, 等. 湖南省典型农田土壤养分现状及近30年变化趋势[J]. 土壤, 2013, 45(4): 585 − 590. [29] Wang Y Q, Zhang X C, Zhang J L, et al. Spatial variability of soil organic carbon in a watershed on the Loess Plateau[J]. Pedosphere, 2009, 19(4): 486 − 495. doi: 10.1016/S1002-0160(09)60141-7 [30] 上官魁星, 吴金水, 周脚根, 等. 县域尺度土壤有机碳储量估算的样点密度优化[J]. 土壤学报, 2014, 51(1): 41 − 48. doi: 10.11766/trxb201301280058 [31] 范曼曼, 吴鹏豹, 张 欢, 等. 采样密度对土壤有机质空间变异解析的影响[J]. 农业现代化研究, 2016, 37(3): 594 − 600. [32] 齐雁冰, 常庆瑞, 刘梦云, 等. 县域农田土壤养分空间变异及合理样点数确定[J]. 土壤通报, 2014, 45(3): 556 − 561. [33] 孙孝林, 王会利, 宁 源. 样点代表性等级采样法在丘陵山区土壤表层有机质制图中的应用[J]. 土壤, 2014, 46(3): 439 − 445. -