Spatio-temporal Evolution of Habitat Quality Based on the Land-use Changes in Shandong Province
-
摘要:
目的 厘清近20年山东省生境质量演变特征,明确土地利用变化对生境质量的影响。 方法 运用InVEST模型、GIS空间分析方法分析了2000 ~ 2018年山东省生境质量的时空演变特征。 结果 研究表明:(1)2000 ~ 2018年山东省生境质量整体处于中级水平且空间差异显著,总体呈现中东部高、西部低的空间格局;较低及以下等级生境质量区趋于沿湖、沿海地区及城市市区集中分布,较高及以上等级生境质量区呈现山地、丘陵集聚特征。(2)生境质量指数从0.558下降到0.538,生境质量级差化特征明显,生境质量提升区趋于济南、淄博、潍坊、青岛、临沂等城市边缘区集中分布,生境质量退化区集聚于滨州、东营、潍坊市沿海地区。 结论 山东省生境质量时空变化受土地利用变化影响显著,生境质量提升区主要发生在耕地向林地、草地转化以及未利用地向林地、水域、草地转化地区。 Abstract:Objective The relationship between land-use changes and regional habitat quality is an important issue in land science. The impact of land use changes on habitat quality was revealed in this study to provide reference for the construction of regional ecological civilization and territorial ecological security pattern. Method Taking Shandong Province as an example, based on remote images, this article explored the spatial and temporal evolution characteristics of habitat quality in Shandong during 2000-2018 with the methods of InVEST model and spatial analysis with GIS. In this study, the habitat quality was divided into five level, including the highest, higher, moderate, lower and lowest. Result The results showed that: (1) The overall habitat quality of Shandong Province was at moderate level, where there were significant spatial differences during 2000-2018. It presented a spatial pattern of high in central and eastern regions and low in western regions. Habitat quality areas of the lowest and lower grades tended to be mainly distributed in the regions along lakes and coastal areas as well as urban fringe areas, while habitat quality areas of the highest and higher grades appeared the characteristics of mountainous and hilly agglomeration. The areas with Habitat quality of grade IV and V were mainly distributed in eastern peninsula region and central mountainous and hilly areas. What is more, habitat quality areas with moderate level were widely distributed throughout the province, which were most concentrated in the western and northern plains. (2) Habitat quality indices decreased from 0.558 to 0.538 in Shandong Province during 2000-2018, and there was relative significant disparity with different habitat quality levels. The changes of habitat quality mainly showed the expansion of habitat quality areas with the lowest and highest levels and degradation of habitat quality areas with lower, higher and moderate levels. The improvement areas of habitat quality mainly occurred in the urban fringe areas of Jinan, Zibo, Weifang, Qingdao, Linyi City and so on, while the degradation areas were mainly located in the coastal areas of Binzhou, Dongying and Weifang. Conclusion The spatial and temporal changes of habitat quality in Shandong are significantly affected by land use changes. The habitat quality of farmland, forestland and construction land appears a degradation trend, while the habitat quality of grassland, water area and unused land is continuously improved. The habitat quality improvement areas mainly occur in the conversion of farmland to forest land and grassland, as well as the conversion of unused land to forestland, water area and grassland. These results will provide references for the construction of regional ecological civilization and territorial ecological security pattern. -
Key words:
- Land use change /
- Habitat quality /
- Spatio-temporal differentiation /
- Shandong Province
-
表 1 威胁因子影响范围及权重
Table 1. Range and weight of the threats affecting habitat quality
威胁因子
Threat factor最大胁迫距离 (km)
Maximum influence distance权重
Weight衰退类型
Attenuation耕地 4 0.70 指数 建设用地 8 1.00 指数 高速公路 2 0.80 线性 国道 6 1.00 线性 省道 4 0.85 线性 铁路 2 0.80 线性 表 2 生境类型对威胁因子的敏感度
Table 2. Sensitivity of habitat types to each threat factor
土地利用类型
Land use type生境适宜度
Habitat suitability耕地
Farmland建设用地
Construction land高速公路
Highway国道
National road省道
Provincial road铁路
Railway耕地 0.40 0.25 0.40 0.40 0.40 0.40 0.30 林地 1.00 0.70 0.80 0.80 0.80 0.80 0.75 草地 1.00 0.70 0.75 0.80 0.80 0.80 0.75 水域 0.80 0.65 0.70 0.65 0.65 0.65 0.60 未利用地 0.00 0.00 0.00 0.00 0.00 0.00 0.00 表 3 2000 ~ 2018年山东省土地利用转移概率
Table 3. Land use transfer probability in Shandong Province during 2000 ~ 2018
年份
Year土地利用类型
Land use type2010年土地利用类型转移概率(%)
Land use transfer probability in 2010耕地
Farmland林地
Forestland草地
Grassland水域
Water area建设用地
Construction land未利用地
Unused land2000年 耕地 97.42 0.02 0 0.38 2.16 0.02 林地 0.07 99.42 0 0.13 0.38 0 草地 3.44 0.12 94.22 1.04 0.91 0.28 水域 1.04 0.02 0.81 94.47 3.22 0.43 建设用地 0.10 0 0 0.14 99.75 0.01 未利用地 8.86 0.01 0.17 3.39 15.08 72.49 年份
Year土地利用类型
Land use type2018年土地利用类型转移概率(%)
Land use transfer probability in 2018耕地
Farmland林地
Forestland草地
Grassland水域
Water area建设用地
Construction land未利用地
Unused land2010年 耕地 88.63 0.23 0.28 1.39 9.18 0.30 林地 9.27 86.33 0.87 0.60 2.67 0.26 草地 27.44 1.38 61.23 2.65 5.74 1.56 水域 9.94 0.30 0.98 75.74 10.26 2.78 建设用地 5.86 0.14 0.42 1.45 91.87 0.26 未利用地 43.19 0.52 2.58 22.49 14.64 16.57 表 4 2000 ~ 2018年山东省生境质量变化
Table 4. Changes of habitat quality in Shandong Province during 2000-2018
等级
Grade2000年
In 20002018年
In 20182000 ~ 2018年变化
Changes during 2000-2018面积(km2)
Area比例(%)
Proportion面积(km2)
Area比例(%)
Proportion面积(km2)
Area比例(%)
ProportionⅠ 19983.00 13.67 25781.25 17.64 5798.25 29.02 Ⅱ 1904.75 1.30 1210.00 0.83 −694.75 −36.47 Ⅲ 101274.00 69.28 97290.75 66.58 −3983.25 −3.93 Ⅳ 10042.50 6.87 6700.50 4.59 −3342.00 −33.28 Ⅴ 12980.50 8.88 15148.75 10.37 2168.25 16.70 表 5 土地利用变化对生境质量的影响
Table 5. Impact of land use change on habitat quality
土地利用类型
Land use type生境质量等级
Grade of habitat qualityⅠ Ⅱ Ⅲ Ⅳ Ⅴ 耕地 1962.50 −660.25 −3925.50 −1038.75 489.50 林地 79.00 −10.00 −418.25 −110.00 −440.50 草地 −103.75 −22.50 −2177.00 −2235.75 −144.50 水域 194.75 −10.50 208.00 −43.25 1989.25 建设用地 4711.75 −40.25 2407.25 −9.25 368.00 未利用地 −827.50 −11.75 −166.50 −48.00 29.00 -
[1] 刘春芳, 王 川, 刘立程. 三大自然区过渡带生境质量时空差异及形成机制: 以榆中县为例[J]. 地理研究, 2018, 37(2): 419 − 432. [2] 高庆彦, 潘玉君, 刘 化. 基于InVEST模型的大理州生境质量时空演化研究[J]. 生态与农村环境学报, 2021, 37(5): 132 − 138. [3] 吴健生, 曹祺文, 石淑芹, 等. 基于土地利用变化的京津冀生境质量时空演变[J]. 应用生态学报, 2015, 26(11): 3457 − 3466. [4] 刘希朝, 李效顺, 蒋冬梅. 基于土地利用变化的黄河流域景观格局及生态风险评估[J]. 农业工程学报, 2021, 37(4): 265 − 274. doi: 10.11975/j.issn.1002-6819.2021.4.032 [5] Estifanos T, Polyakov M, Pandit R, et al. Managing conflicts between local land use and the protection of the Ethiopian wolf: Residents’ preferences for conservation program design features[J]. Ecological Economics, 2020, 169: 106511. doi: 10.1016/j.ecolecon.2019.106511 [6] Ristic V, Maksin M, Nenkovic-Riznic M, et al. Land-use evaluation for sustainable construction in a protected area: a case of Sara mountain national park[J]. Journal of Environmental Management, 2018, 206: 430 − 445. doi: 10.1016/j.jenvman.2017.09.080 [7] Rao Y, Zhang J, Wang K, et al. How to prioritize protected areas: A novel perspective using multidimensional land use characteristics[J]. Land Use Policy, 2019, 83: 1 − 12. doi: 10.1016/j.landusepol.2019.01.023 [8] Ma B, Xie Y, Zhang T, et al. Identification of conflict between wildlife living spaces and human activity spaces and adjustments in/around protected areas under climate change: A case study in the Three-River Source Region[J]. Journal of Environmental Management, 2020, 262(5): 110322. [9] Matseketsa G, Muboko N, Gandiwa E, et al. An assessment of human-wildlife conflicts in local communities bordering the western part of Save Valley Conservancy, Zimbabwe[J]. Global Ecology and Conservation, 2019, 20: e00737. doi: 10.1016/j.gecco.2019.e00737 [10] 陈竹安, 冯祥瑞, 洪志强, 等. 南昌市土地利用的空间冲突风险评估及分区优化研究−基于“三生空间”视角[J]. 世界地理研究, 2021, 30(3): 533 − 545. doi: 10.3969/j.issn.1004-9479.2021.03.2019676 [11] Karanth K K, Shriyam G, Anubhav V. Compensation payments, procedures and policies towards human-wildlife conflict management: Insights from India[J]. Biological Conservation, 2018, 227: 383 − 389. doi: 10.1016/j.biocon.2018.07.006 [12] 吴 蒙, 周冯琦, 程 进. 基于生态系统服务的快速城市化地区空间冲突测度及时空演变特征[J]. 中国人口·资源与环境, 2021, 31(5): 12 − 20. [13] 周晓艳, 何依依, 黄 欣, 等. 三峡库区生境质量的地形梯度效应及对土地利用变化的响应[J]. 农业工程学报, 2021, 37(11): 259 − 267. doi: 10.11975/j.issn.1002-6819.2021.11.029 [14] 李胜鹏, 柳建玲, 林 津, 等. 基于1980 ~ 2018年土地利用变化的福建省生境质量时空演变[J]. 应用生态学报, 2020, 31(12): 4080 − 4090. [15] Yohannes H, Soromessa T, Argaw M, et al. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands[J]. Journal of Environmental Management, 2021, 281(2): 111885. [16] Yang Y. Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang Mountains in Hebei Province, China[J]. Ecological Indicators, 2021, 129: 107967. doi: 10.1016/j.ecolind.2021.107967 [17] 黄木易, 岳文泽, 冯少茹, 等. 基于InVEST模型的皖西大别山区生境质量时空演化及景观格局分析[J]. 生态学报, 2020, 40(9): 2895 − 2906. [18] 钟莉娜, 王 军. 基于InVEST模型评估土地整治对生境质量的影响[J]. 农业工程学报, 2017, 33(1): 250 − 255. doi: 10.11975/j.issn.1002-6819.2017.01.034 [19] Zhu C, Zhang X, Zhou M, et al. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China[J]. Ecological Indicators, 2020, 117(3): 106654. [20] Tang F, Fu M, Wang L, et al. Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality[J]. Ecological Indicators, 2020, 117(1): 106719. [21] 王志强, 陈志超, 郝成元. 基于 HSI 模型的扎龙国家级自然保护区丹顶鹤繁殖生适宜性评价[J]. 湿地科学, 2009, 7(3): 197 − 201. [22] 朱增云, 阿里木江·卡斯木. 基于地理探测器的伊犁谷地生境质量时空演变及其影响因素[J]. 生态学杂志, 2020, 39(10): 3408 − 3420. [23] 黄智洵, 王飞飞, 曹文志. 耦合生态系统服务供求关系的生态安全格局动态分析−以闽三角城市群为例[J]. 生态学报, 2018, 38(12): 4327 − 4340. [24] 张文静, 孙小银, 单瑞峰. 基于InVEST模型研究山东半岛沿海地区土地利用变化及其对生境质量的影响[J]. 环境生态学, 2019, 1(5): 15 − 23. [25] 王介勇, 刘彦随. 三亚市土地利用/覆被变化及其驱动机制研究[J]. 自然资源学报, 2009, 24(8): 1458 − 1466. doi: 10.3321/j.issn:1000-3037.2009.08.015 [26] 包玉斌, 刘 康, 李 婷, 等. 基于InVEST模型的土地利用变化对生境的影响−以陕西省黄河湿地自然保护区为例[J]. 干旱区研究, 2015, 32(3): 622 − 629. [27] 王志良, 李 英, 罗金明, 等. 基于InVEST模型的嫩江流域生境质量时空格局演变[J]. 环境生态学, 2020, 2(2/3): 19 − 26. [28] 石小伟, 冯广京, 苏培添, 等. 大都市郊区土地利用时空演变特征与生境质量评价[J]. 农业工程学报, 2021, 37(4): 275 − 284. doi: 10.11975/j.issn.1002-6819.2021.4.033 [29] 朱 杰, 龚 健, 李靖业. 青藏高原东部生态敏感区生境质量时空演变特征: 以青海省河湟谷地为例[J]. 资源科学, 2020, 42(5): 991 − 1003. doi: 10.18402/resci.2020.05.16 [30] Sharp R, Tallis H T, Ricketts T, et al. InVEST 3.2. 0 user’s guide[M]. Stanford: The Natural Capital Project. 2015. [31] 黄宝华. 基于时序变化的山东土地利用对生境质量影响研究[J]. 国土资源科技管理, 2021, 38(4): 41 − 50. [32] Chu L, Sun T C, Wang T W, et al. Envolution and prediction of landscape pattern and habitat quality based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA)[J]. Sustainability, 2018, 10: 3854. doi: 10.3390/su10113854 [33] Xu X B, Yang G S, Tan Y, et al. Ecosystem services trade-offs and determinants in China’s Yangtze River Economic Belt from 2000 to 2015[J]. Science of the Total Environment, 2018, 634: 1601 − 1614. doi: 10.1016/j.scitotenv.2018.04.046 [34] Zhang T Z, Gao Y, Li C, et al. How human activity has changed the regional habitatt quality in an eco-economic zone: Evidence from Poyang Lake Eco-Economic Zone, China[J]. International Journal of Environmental Research and Public Health, 2020, 17: 6253. doi: 10.3390/ijerph17176253 -