Nutritional Components of Cinnamomum migao Fruits from Different Habitats and Their Correlations with Soil Nutrients and Enzyme Activities
-
摘要:
目的 探究影响米槁果实品质指标的土壤因子,为人工栽培选择合适条件培育品质优良的药材提供参考依据。 方法 自不同产地采集22份米槁果实和土壤样品,测定其果实营养成分和土壤养分含量、酶活性。应用简单相关性分析和多元回归分析,筛选影响米槁果实品质的主要土壤因子。 结果 产地不同,米槁果实营养成分及土壤养分含量、酶活性不同;不同土壤养分、酶活性对米槁果实营养成分的影响程度也不同。总糖主要受全钾、速效钾、和有机质影响;还原糖主要受土壤全磷、全钾、速效钾、pH和过氧化氢酶影响;可溶性多糖主要受土壤全磷、全钾、速效钾、pH和酸性磷酸酶影响;粗多糖主要受土壤全磷、全钾、碱解氮和pH影响;多糖主要受土壤全磷、全钾、速效钾、有机质、pH和酸性磷酸酶的影响。总黄酮主要受土壤全磷、速效钾、有机质、pH 、酸性磷酸酶脲酶和过氧化氢酶影响;粗脂肪主要受土壤全磷、有效磷、速效钾、pH、脲酶、过氧化氢酶的影响。土壤 pH和全钾是影响果实综合品质的重要因子,其次是全磷、速效钾、有机质、过氧化氢酶活性和酸性磷酸酶活性。 结论 土壤养分含量是制约米槁果实产量和品质的重要因素。 Abstract:Objective The fruit components of Cinnamomum (C.) migao affected by soil factors will be clarified in order to provide the basis of artificial cultivation for it. Method Fruit nutrient components soil nutrients and enzyme activities were determined from 22 fruits and soil samples of C. migao collected from different areas. The main soil factors affecting the quality of C. migao fruits were screened by simple correlation analysis and multiple regression analysis. Result The results showed that the nutrient composition, soil nutrient contents, and enzyme activities of C. migao fruit were different in areas. Different soil nutrients and enzyme activities had different effects on the nutrient composition of C.migao. Total sugar was mainly affected by soil total potassium (TK), available potassium (AK), and organic matter (OM). The reducing sugar was mainly affected by soil total phosphorus (TP), TK, AK, pH, and catalase (S-CAT). Soluble polysaccharide was mainly affected by soil TP, TK, AK, pH, and acid phosphatase (S-ACP). Crude polysaccharides were mainly affected by soil TP, TK, alkaline nitrogen (AN) and pH. Polysaccharides were mainly affected by soil TP, TK, AK, OM, pH, and S-ACP. The total flavonoids were mainly affected by soil TP, AK, OM, pH and S-ACP, urease and S-ACP. And the ether extract was mainly affected by soil TP, available phosphorus, AK, pH, urease, and S-CAT. Soil pH and TK were important factors affecting the fruit quality of C. migao, followed by TP, AK, OM, S-CAT and S-ACP activities. Conclusion Therefore, increasing or decreasing soil nutrient contents is an important way to improve the yield and quality of C. migao fruit. -
Key words:
- C. migao fruit /
- Different habitats /
- Nutritional composition /
- Soil nutrients /
- Soil enzyme activities /
- Correlation
-
表 1 米槁果实和根际土壤采样地点
Table 1. Sampling sites of C. migao fruits and rhizosphere soil
采样地点
Sampling site经纬度
Longitude and latitude海拔(m)
Altitude样品数
Number of sample贵州·公里村(GL) N 25°26′56″ E106°31′13″ 750 2 贵州·打寒村(DH) N 25°4′59″ E106°5′46″ 500 1 贵州·连环村(LH) N 25°20′15″ E106°2′28″ 990 2 贵州·红旗村(HQ) N 25°0′21″ E106°31′13″ 750 3 广西·交念村(JN) N 25°26′56″ E105°47′11″ 1120 2 贵州·坝碰村(BP) N 25°7′13″ E106°3′53″ 670 1 贵州·打忙村(DM) N 25°20′15″ E105°40′6″ 860 1 云南·那毕村(NB) N 23°31′40″ E105°54′39″ 680 1 贵州·祥乐村(XL) N 25°10′21″ E106°5′46″ 570 1 贵州·平艾村(PA) N 25°17′18″ E106°35′43″ 790 3 贵州·拉塘村(LT) N 25°29′19″ E108°15′2″ 660 1 广西·林纳村(LN) N 24°56′16″ E106°38′32″ 1030 1 云南·为独村(WD) N 23°29′29″ E105°31′56″ 1220 3 注:表中样品数指的是在同一产地不同米槁植株处采集的样品,即在同一株米槁植株处既采集果实样品、也采集根际土壤样品,果实样品与土壤样品是一一对应的。 表 2 不同产地米槁果实的营养成分含量
Table 2. Nutritional components of C. migao fruit from different areas
产地
Habitat总糖(%)
Total sugar还原糖(%)
Reducing sugar可溶性多糖(%)
Soluble polysaccharides粗多糖(%)
Crude polysaccharide多糖(%)
Polysaccharide粗脂肪(%)
Ether extract总黄酮(mg g−1)
Total flavonoidsGL-1 24.90 ± 1.79 a 4.87 ± 0.11 k 2.25 ± 0.00 e 5.54 ± 0.03 b 7.79 ± 0.02 c 18.38 ± 0.39 h 9.61 ± 0.01 b GL-2 23.71 ± 0.07 abcd 4.78 ± 0.02 k 3.12 ± 0.00 b 3.46 ± 0.01 fg 6.58 ± 0.01 e 15.30 ± 0.10 i 6.50 ± 0.01 g DH 24.20 ± 0.85 abcd 12.20 ± 0.08 c 0.66 ± 0.21 j 4.99 ± 0.26 c 5.65 ± 0.01 hi 33.59 ± 0.53 c 7.98 ± 0.23 d LH-1 23.35 ± 0.46 abcd 11.38 ± 0.19 d 1.95 ± 0.00 f 3.02 ± 0.08 h 4.97 ± 0.10 k 44.18 ± 0.06 b 10.71 ± 0.03 b LH-2 22.32 ± 0.06 d 10.52 ± 0.08 e 0.88 ± 0.00 j 3.51 ± 0.10 fg 4.38 ± 0.01 l 41.34 ± 0.33 a 7.50 ± 0.01 e HQ-1 22.46 ± 0.09 d 8.48 ± 0.09 g 3.84 ± 0.00 a 3.29 ± 0.01 g 7.13 ± 0.00 d 22.65 ± 0.20 g 5.37 ± 0.03 i HQ-2 23.99 ± 0.10 abcd 8.75 ± 0.10 g 1.27 ± 0.00 i 4.47 ± 0.00 d 5.75 ± 0.00 h 18.76 ± 0.62 h 3.97 ± 0.02 j HQ-3 15.21 ± 0.92 e 9.48 ± 0.05 f 1.20 ± 0.00 i 4.42 ± 0.01 d 5.61 ± 0.01 hi 20.93 ± 0.20 g 6.92 ± 0.01 f JN-1 22.76 ± 0.83 cd 14.15 ± 0.22 a 1.59 ± 0.01 hi 2.75 ± 0.00 i 4.33 ± 0.00 l 27.28 ± 0.22 d 8.06 ± 0.01 d JN-2 24.20 ± 0.08 abcd 14.23 ± 0.11 a 1.73 ± 0.00 g 3.07 ± 0.02 h 4.80 ± 0.01 k 27.46 ± 0.47 d 5.37 ± 0.03 i BP 23.30 ± 0.20 abcd 8.72 ± 0.08 g 1.69 ± 0.00 gh 3.67 ± 0.00 f 5.36 ± 0.00 ij 35.12 ± 0.04 c 13.34 ± 0.02 a DM 22.77 ± 0.16 cd 2.83 ± 0.04 lm 2.93 ± 0.01 c 3.39 ± 0.01 g 6.32 ± 0.10 fg 25.88 ± 0.74 f 7.83 ± 0.01 d NB 24.63 ± 0.26 abc 2.68 ± 0.06 m 1.91 ± 0.00 f 4.01 ± 0.01 e 5.91 ± 0.10 g 25.75 ± 0.62 f 6.13 ± 0.01 h XL 22.97 ± 0.23 bcd 3.24 ± 0.07 l 2.25 ± 0.00 e 4.55 ± 0.02 d 6.80 ± 0.01 d 39.39 ± 0.42 b 3.08 ± 0.02 k PA-1 23.16 ± 0.17 abcd 5.99 ± 0.04 i 2.25 ± 0.00 e 5.55 ± 0.03 b 7.79 ± 0.02 c 20.3 ± 0.51 g 9.61 ± 0.01 b PA-2 23.59 ± 0.20 abcd 5.34 ± 0.09 j 2.63 ± 0.01 d 6.38 ± 0.00 a 9.01 ± 0.01 a 21.23 ± 0.31 g 9.21 ± 0.04 c PA-3 23.20 ± 0.14 abcd 5.65 ± 0.14 ij 2.38 ± 0.01 e 6.10 ± 0.01 a 8.49 ± 0.01 b 23.23 ± 0.28 g 9.35 ± 0.02 c LT 24.87 ± 0.06 ab 7.90 ± 0.03 h 2.64 ± 0.00 d 3.81 ± 0.01 e 6.45 ± 0.01 f 36.35 ± 0.54 c 7.74 ± 0.09 e LN 24.97 ± 0.37 a 14.04 ± 0.13 a 1.23 ± 0.00 i 4.04 ± 0.01 e 5.28 ± 0.00 j 23.3 ± 1.15 g 6.18 ± 0.02 h WD-1 24.70 ± 0.22 ab 12.25 ± 0.20 c 1.38 ± 0.00 i 4.11 ± 0.01 e 5.49 ± 0.01 ij 28.32 ± 0.62 d 5.86 ± 0.03 h WD-2 24.39 ± 0.12 abc 13.38 ± 0.26 b 1.51 ± 0.00 i 4.06 ± 0.01 e 5.56 ± 0.01 hij 27.55 ± 0.49 d 5.37 ± 0.03 i WD-3 24.08 ± 0.11 abcd 11.17 ± 0.07 d 1.66 ± 0.01 gh 4.05 ± 0.02 e 5.71 ± 0.02 h 28.09 ± 0.07 d 5.51 ± 0.01 i 平均 Mean 23.35 8.73 1.95 4.19 6.15 27.47 7.33 注:每列中不同小写字母表示差异显著(P < 0.05),下同。 表 3 米槁果实营养成分与根际土壤因子间的相关性
Table 3. Correlation coefficients between fruit nutrient components of C. migao and rhizosphere soil factors
项目
Item总糖
Total sugar还原糖
Reducing sugar可溶性多糖
Soluble polysaccharides粗多糖
Crude polysaccharide多糖
Polysaccharide总黄酮
Total flavonoids粗脂肪
Ether extract全氮 −0.032 0.218 −0.114 0.199 0.087 −0.235 0.013 全磷 −0.020 −0.196 0.191 0.578** 0.570** 0.292* −0.058 全钾 −0.093 0.101 −0.019 −0.369* −0.301* −0.056 −0.094 碱解氮 0.095 −0.267* 0.055 0.442** 0.365** 0.584** −0.017 有效磷 0.252* −0.164 −0.018 0.099 0.067 −0.361** 0.251* 速效钾 0.491** 0.292* −0.269* 0.114 −0.075 0.260 0.365 有机质 −0.215 −0.047 0.004 0.283* 0.225 −0.090 0.176 pH 0.233 −0.270* 0.255* 0.217 0.326** −0.260* −0.374** 酸性磷酸酶 0.173 0.097 0.208 −0.116 0.036 0.188 −0.022 脲酶 −0.063 −0.159 0.242 0.166 0.279* 0.184 −0.572* 过氧化氢酶 −0.015 0.218 0.144 0.198 0.244* −0.490* −0.401* 注:*表示P<0.05,**表示 P<0.01,下表同。 表 4 米槁根际各土壤因子与果实各营养成分之间的复相关系数
Table 4. Coefficients of multiple correlations between soil factors in rhizosphere and nutrient component of C. migao
土壤因子
Soil factor复相关系数
Multiple correlation coefficient全氮 0.532 全磷 0.710** 全钾 0.477 碱解氮 0.684* 有效磷 0.638* 速效钾 0.729** 有机质 0.559 pH 0.552 酸性磷酸酶 0.428 脲酶 0.647* 过氧化氢酶 0.828** 表 5 影响米槁果实营养成分的主要土壤因子筛选和回归方程建立
Table 5. Selection of main soil factors affecting the nutrient composition of C. migao fruit and establishment of regression equations
果实营养成分(y)
Fruit nutrition回归方程
Regression equation方程F值
F value of the equationy1 总糖 y1 = 18.275 − 3.036x3 + 0.004x6 − 0.034x7 4.616** y2 还原糖 y2 = 11.145 − 5.696x2 − 7.343x3 + 0.011x6 − 3.684x8 + 12.491x11 16.340** y3 可溶性多糖 y3 = 0.095 + 1.559x2 − 0.969x3 − 0.0002x6 + 0.518x8 + 0.106x9 4.593** y4 粗多糖 y4 = 1.505 + 0.007x2 − 1.959x3 + 0.0075x4 + 0.465x8 8.647** y5 多糖 y5 = 2.004 + 2.875x2 − 2.929x3 − 0.002x6 − 0.011x7 + 0.983x8 + 0.081x9 19.765** y6 总黄酮 y6 = 6.300 + 6.388x2 + 3.717x6 − 0.034x7 − 0.987x8 + 0.173x9 + 0.074x10 − 4.188x11 15.912** y7 粗脂肪 y7 = 38.677 + 11.743x3 + 9.713x5 + 0.013x6 − 4.777x8 − 0.298x10 − 15.040x11 21.573** 注:x1:全氮;x2:全磷;x3,全钾;x4:碱解氮;x5:有效磷;x6:速效钾;x7:有机质;x8:pH;x9:S-ACP;x10:S-UE;x11:S-CAT。 -
[1] 陈敬忠, 黄小龙, 刘济明, 等. 影响不同果期米槁主要成分的根际优势微生物群落及其对土壤性质的响应[J]. 植物营养与肥料学报, 2021, 27(10): 1779 − 1791. doi: 10.11674/zwyf.2021095 [2] 陈敬忠, 刘济明, 王 灯, 等. 基于AcrGIS中协同克里金插值的米槁品质适宜性分析及评价[J]. 四川大学学报(自然科学版), 2020, 57(3): 583 − 590. [3] 武孔云, 徐必学, 梁光义, 等. 不同贮藏时间对米槁药材有效成分影响的比较研究[J]. 时珍国医国药, 2012, 23(9): 2323 − 2325. doi: 10.3969/j.issn.1008-0805.2012.09.096 [4] 李亚辉, 杨 欣. 贵州大果木姜子对急性心肌缺血损伤的保护作用[J]. 中医药信息, 2020, 37(3): 4 − 8. [5] 张小波, 周 涛, 郭兰萍, 等. 苗药大果木姜子挥发油成分变化及其地理分布[J]. 生态学报, 2011, 31(18): 5299 − 5306. [6] 周 涛, 杨占南, 江维克, 等. 民族药大果木姜子果实挥发油成分的变异及其规律[J]. 中国中药杂志, 2010, 35(7): 852 − 856. [7] 陈敬忠. 米槁果实化学成分的地理变异及道地性成因分析[D]. 贵州大学, 2020. [8] 童炳丽, 刘济明, 陈敬忠, 等. 米槁根际土壤真菌多样性及其与果实药用活性成分含量的相关性分析[J]. 菌物学报, 2019, 38(7): 1058 − 1070. [9] Wang C J, Wang Y L, Wang M M, et al. Soluble sugars accumulation and related gene expression during fruit development in Cucurbita maxima Duchesne[J]. Scientia Horticulturae, 2020: 272. [10] 李 娜, 余 璇, 于巧红, 等. 中药多糖类成分稳定性研究进展[J]. 中国中药杂志, 2019, 44(22): 4793 − 4799. [11] 朱 鹤, 李憬霖, 徐 敏, 等. 作物种子的营养成分与其萌发特性关系的探讨[J]. 种子, 2019, 38(8): 47 − 52. [12] 刘大会, 郭兰萍, 黄璐琦, 等. 矿质营养对药用植物黄酮类成分合成的影响[J]. 中国中药杂志, 2010, 35(18): 2367 − 2371. [13] 刘伟锋, 张 磊, 杨文英, 等. 骏枣园土壤养分与枣果实品质间的典型相关性分析[J/OL]. 经济林研究, 2021(2): 104-114 + 122[2021-07-02]. DOI: 10.14067/j.cnki.1003-8981.2021.02.013. [14] Huang X L, Tian T, Chen J Z, et al. Transcriptome analysis ofCinnamomum migao seed germination in medicinal plants of Southwest China[J]. BMC plant biology, 2021, 21(1) [15] Huang X L, Chen J Z, Liu J M, et al. Autotoxicity hinders the natural regeneration of Cinnamomum migao H. W. Li in Southwest China[J]. Forests, 2019, 10(10) [16] 刘 刚, 刘育辰, 康雪佳, 等. 苗药大果木姜子总黄酮与糖类成分含量测定[J]. 安徽农业科学, 2017, 45(3): 141 − 144. doi: 10.3969/j.issn.0517-6611.2017.03.048 [17] 李丽霞, 刘济明, 黄小龙, 等. 米槁天然种群遗传多样性的ISSR标记分析[J]. 西北农林科技大学学报(自然科学版), 2018, 46(7): 15 − 22. [18] 潘兴娇, 张 杰, 路风中, 等. 重楼属植物根茎有效成分与菌根侵染率、土壤营养成分之间的相关性[J]. 中国药房, 2016, 27(22): 3037 − 3040. doi: 10.6039/j.issn.1001-0408.2016.22.05 [19] 杨新杰, 许苗苗, 宋 蓓, 等. 土壤因子对珠子参药材质量的影响研究[J]. 中药材, 2014, 37(9): 1513 − 1517. [20] 黄路婷, 刘济明, 李 佳, 等. 氮添加对米槁林下土壤养分及酶活性的影响[J/OL]. 中南林业科技大学学报, 2021(6): 122 − 130[2021-07- 01]. DOI: 10.14067/j.cnki.1673-923x.2021.06.013. [21] Li R F, Chang Y D, Hu T, et al. Effects of different fertilization treatments on soil, leaf nutrient and fruit quality of Citrus grandis var. longanyou[J]. World Journal of Engineering and Technology, 2017, 5(2): 1 − 14. [22] 吴 丹, 罗世琼, 杨占南, 等. 土壤养分及微生物特征对鱼腥草多酚和总黄酮的影响及相关性分析[J]. 中国中药杂志, 2015, 40(8): 1444 − 1452. [23] 李苗苗, 刘军民, 罗登花, 等. 鸡血藤黄酮类成分与土壤养分的相关性分析研究[J]. 中药新药与临床药理, 2017, 28(2): 238 − 243. [24] 张 超, 周 旭, 张 海, 等. 苹果专用肥对旱地果园土壤酶活性以及微生物多样性的影响[J]. 生态学杂志, 2017, 36(12): 3485 − 3492. [25] 祖 蕾, 张晓婷, 申 强, 等. 不同土壤条件对越橘生长发育及果实品质的影响[J]. 北方园艺, 2019, (16): 17 − 22. [26] 邱永华, 金爱武, 张四海, 等. 不同施肥方式对竹笋品质的影响[J]. 竹子学报, 2017, 36(1): 41 − 48. doi: 10.3969/j.issn.1000-6567.2017.01.009 [27] 徐胜涛, 何 翔, 杨佩文, 等. 不同海拔高度下香蕉园土壤理化性质及果实品质的变化[J]. 西南农业学报, 2020, 33(6): 1215 − 1220. [28] Ning C C, Gao P D, WANG B Q, et al. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content[J]. Journal of Integrative Agriculture, 2017, 16(8): 1819 − 1831. doi: 10.1016/S2095-3119(16)61476-4 [29] Liu X, Li C, Meng M J, et al. Comparative effects of the recovery from sulfuric and nitric acid rain on the soil enzyme activities and metabolic functions of soil microbial communities[J]. Science of the Total Environment, 2020, 714(C) [30] 孙家骏, 付青霞, 谷 洁, 等. 生物有机肥对猕猴桃土壤酶活性和微生物群落的影响[J]. 应用生态学报, 2016, 27(3): 829 − 837. [31] Šimanský V, Horváthová J, Jonczak J, et al. Suitability of carbon and nitrogen management indices for the evaluation of soil organic matter under different soil management practices in a productive vineyard[J]. Journal of Ecological Engineering, 2021, (prepublish) [32] 李 苑, 张 令, 黎祖尧, 等. 不同产地厚竹笋的营养成分及其对土壤养分的响应特征[J]. 经济林研究, 2017, 35(4): 147 − 154. -