Effect of Reducing Soil Disinfestation with Different Organic Materials on Microbial Community at Tobacco Planted Soil
-
摘要:
目的 本文探究了在厌氧强还原条件下,豆渣、甘蔗渣单施及其等比例混合物施用后,不同处理间土壤理化性质与微生物群落变化的相关关系。 方法 应用Tax4Fun及FUNGuild分别对细菌和真菌群落进行功能预测,采用Vegan和pheatmap等R语言软件包完成统计分析和绘图,利用生物信息学方法分析不同样本中微生物群落结构和多样性变化,确定微生物与RSD技术之间的相关性。 结果 结单一用蔗渣和豆渣的RSD处理都提高了真菌群落丰富度。在门的水平上,放线菌(Actinobacteria)、厚壁菌门(Firmicutes)、酸菌门(Acidobacteria)、子囊菌门(Ascomycota)和担子菌门(Basidiomycota)的相对丰度发生变化,揭示了处理间群落结构存在显著差异。此外,RSD还有效降低了镰刀菌属(Fusarium)、链格孢属(Alternaria)等土传病原菌的丰度。斯皮尔曼相关性分析说明全氮、全磷、碱解氮、速效钾、pH和有机质是造成群落结构差异的主要影响因子。功能注释结果显示RSD技术能提高土壤中细菌群落萜类和多酮类化合物代谢的功能活性及腐生真菌的丰度。 结论 单独施用豆渣的RSD处理可以通过促进土壤肥力的提升及土壤健康群落重构来缓解植烟土壤连作障碍,是一种优良的控制土传病害的技术手段。 Abstract:Objective As an important cash crop in China, tobacco has been suffering from the continuous cropping obstacle in the planting process. Reductive soil disinfestation (RSD) could be an effective way to alleviate continuous cropping obstacles, while its effects on the structure and function of the microbial community in tobacco soil were rarely reported. The correlation between the changes of soil properties and microbial community under various RSD treatments was investigated by using bean dregs, sugarcane bagasse, and their mixtures in equal proportion. Method The Tax4Fun and Funguild were used to predict the function of bacterial and fungal communities respectively, and used R language software packages such as Vegan and pheatmap to complete statistical analysis and drawing. Moreover, bioinformatics methods were used to analyze the changes of microbial community structure and diversity in different samples to determine the relationship between microorganisms and RSD technologies. Result The abundance of fungi was increased with addition of bagasse or okara. The relative abundances at the phylum level such as Actinobacteria, Firmicutes, Acidobcteria, Ascomycota and Basidiomycota were changed, revealing the difference in community structure between different treatments. In addition, RSD effectively reduced the abundance of Fusarium, Alternaria and other soil borne pathogens. Spearman correlation analysis showed that total nitrogen, total phosphorus, available nitrogen and potassium, pH and organic matter were the main factors driving community structure differences. Moreover, community function prediction showed that RSD treatment increased the activity of bacteria related to terpenoids and polyketides metabolism as well as the population of saprotroph fungi relative to CK. Conclusion Through improving soil fertility and promoting reconstruction of soil healthy microbial community, the RSD treatment with addition of bean dregs alone can alleviate the continuous cropping obstacle of tobacco-growing soil, and also it can be used as an excellent technology to control soil-borne diseases. -
表 1 不同处理对土壤理化性质的影响
Table 1. Effect of soil physical and chemical properties by different treatments
处理
TreatmentpH 总氮
Total
nitrogen
(g kg−1)总磷
Total
phosphate
(g kg−1)总钾
Total
potassium
(g kg−1)碱解氮
alkali-hydrolyzable
nitrogen
(mg kg−1)有效磷
Available
phosphate
(mg kg−1)速效钾
Available
potassium
(mg kg−1)有机质
Organic
matter
(g kg−1)交换性镁
Exchangeable
magnesium
(cmol kg−1)CK 5.47 ± 0.42 c 1.29 ± 0.04 d 1.21 ± 0.05 b 23.31 ± 0.35 a 73.00 ± 4.58 b 121.77 ± 5.33 d 424.67 ± 17.04 b 13.79 ± 2.06 b 9.23 ± 0.91 a HL 5.83 ± 0.12 c 1.39 ± 0.08 c 1.25 ± 0.02 b 23.04 ± 0.22 ab 69.67 ± 4.51 b 158.77 ± 3.35 c 459.00 ± 22.91 b 16.33 ± 1.81 b 8.03 ± 0.21 b MM 6.63 ± 0.15 ab 1.71 ± 0.03 b 1.38 ± 0.06 a 22.61 ± 0.52 ab 99.33 ± 2.08 a 169.97 ± 1.48 bc 888.67 ± 116.00 a 22.06 ± 1.38 a 6.90 ± 0.17 cd BD 6.83 ± 0.15 a 1.85 ± 0.07 a 1.42 ± 0.08 a 22.83 ± 0.27 ab 109.00 ± 14.42 a 246.50 ± 13.72 a 930.33 ± 82.40 a 22.24 ± 2.55 a 7.43 ± 0.42 bc SB 6.37 ± 0.15 b 1.80 ± 0.05 ab 1.36 ± 0.03 a 22.37 ± 0.76 b 95.67 ± 4.73 a 179.30 ± 8.71 b 791.33 ± 80.53 a 21.25 ± 1.28 a 6.17 ± 0.12 d 注:同一列不同字母代表理化指标在处理间的显著差异(P < 0.05) 表 2 置换多元方差分析结果
Table 2. Permutational multivariate analysis of variance results
相关因子
Relative factor细菌
Bacteria真菌
Fungi均方
Mean squareF R2 P Mean Sqs F R2 P 总氮 0.1656 4.2928 0.2482 * 0.5408 6.6961 0.3400 ** 总磷 0.2266 6.6894 0.3397 ** 0.7086 10.4409 0.4454 ** 总钾 0.0479 1.0065 0.0719 0.403 0.0157 0.1294 0.0099 0.878 碱解氮 0.2294 6.8144 0.3439 ** 0.4811 5.6362 0.3024 * 有效磷 0.3029 10.8128 0.4541 ** 0.5148 6.2200 0.3236 ** 速效钾 0.2713 8.9133 0.4068 ** 0.8716 15.7530 0.5479 ** pH 0.2275 6.7304 0.3411 ** 0.4563 5.2291 0.2869 * 有机质 0.1796 4.7917 0.2693 * 0.4049 4.4385 0.2545 * 交换性镁 0.0827 1.8410 0.1241 0.168 0.1540 1.3930 0.0968 0.226 注:R2表示分组因素对样本差异的解释能力;R2越大,说明分组因子对样本差异的解释能力越强; *和**分别表示样本差异显著水平。 -
[1] Yan S, et al. Influence of Soil Organic Carbon on the Aroma of Tobacco Leaves and the Structure of Microbial Communities[J]. Current Microbiology, 2020, 77(6): 931 − 942. doi: 10.1007/s00284-020-01895-7 [2] Wang S, et al. Response of soil fungal communities to continuous cropping of flue-cured tobacco[J]. Scientific Reports, 2020, 10(1): 1 − 10. doi: 10.1038/s41598-019-56847-4 [3] Burges A, et al. Long-term phytomanagement with compost and a sunflower - Tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil[J]. Science of the Total Environment, 2020, 700: 134529. doi: 10.1016/j.scitotenv.2019.134529 [4] Zheng X, et al. Response in Physicochemical Properties of Tobacco-Growing Soils and N/P/K Accumulation in Tobacco Plant to Tobacco Straw Biochar[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(2): 293 − 305. doi: 10.1007/s42729-019-00108-w [5] Khadka R B, et al. Effects of anaerobic soil disinfestation carbon sources on soilborne diseases and weeds of okra and eggplant in Nepal[J]. Crop Protection, 2020, 135: 104846. doi: 10.1016/j.cropro.2019.104846 [6] Jaiswal A K, et al. Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar[J]. Scientific Reports, 2017, 7: 44382. doi: 10.1038/srep44382 [7] Huang X, et al. Differential responses of soil bacterial community and functional diversity to reductive soil disinfestation and chemical soil disinfestation[J]. Geoderma, 2019, 348: 124 − 134. doi: 10.1016/j.geoderma.2019.04.027 [8] Zhao J, et al. Reductive soil disinfestation incorporated with organic residue combination significantly improves soil microbial activity and functional diversity than sole residue incorporation[J]. Applied Microbiology and Biotechnology, 2020, 104(17): 7573 − 7588. doi: 10.1007/s00253-020-10778-7 [9] Liu L, et al. Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation[J]. Biological Control, 2016, 101: 103 − 113. doi: 10.1016/j.biocontrol.2016.06.011 [10] Liu L, et al. Watermelon planting is capable to restructure the soil microbiome that regulated by reductive soil disinfestation[J]. Applied Soil Ecology, 2018, 129: 52 − 60. doi: 10.1016/j.apsoil.2018.05.004 [11] Qin S, et al. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield[J]. Plos One, 2017, 12(5): e175934. [12] Huang X, et al, Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation[J]. Applied Microbiology and Biotechnology, 2016, 100(12): 5581-5593. [13] Zhu T, et al. Effects of organic material amendment and water content on NO, N2O, and N-2 emissions in a nitrate-rich vegetable soil[J]. Biology and Fertility of Soils, 2013, 49(2): 153 − 163. doi: 10.1007/s00374-012-0711-4 [14] 《土壤环境监测分析方法》和《魏复盛文集》相继发布[J]. 中国环境监测, 2019, 35(4): 77. [15] 吴学玲 et al. 四环素降解菌共培养体系构建及废水修复的群落分析[J]. 生物技术通报, 2020, 36(10): 116 − 126. [16] 陈吉良, et al. 一种快速高效提取病原真菌DNA作为PCR模板的方法[J]. 菌物学报, 2011, 30(1): 147 − 149. [17] Zhao J, et al. Distinct impacts of reductive soil disinfestation and chemical soil disinfestation on soil fungal communities and memberships[J]. Applied Microbiology and Biotechnology, 2018, 102(17): 7623 − 7634. doi: 10.1007/s00253-018-9107-1 [18] 魏光钰, et al. 施氮量、种植密度、留叶数对烤烟农艺性状及产质量的影响[J]. 湖南农业科学, 2020, (10): 42 − 45. [19] Zhu T, et al. Reductive soil disinfestation (RSD) alters gross N transformation rates and reduces NO and N2O emissions in degraded vegetable soils[J]. Plant and Soil, 2014, 382(1-2): 269 − 280. doi: 10.1007/s11104-014-2160-3 [20] Cao S, et al. Characterization of the refractory dissolved organic matters (rDOM) in sludge alkaline fermentation liquid driven denitrification: Effect of HRT on their fate and transformation[J]. Water Research, 2019, 159: 135 − 144. doi: 10.1016/j.watres.2019.04.063 [21] Liu X, et al. Bioremediation of Cd-contaminated soil by earthworms (Eisenia fetida): Enhancement with EDTA and bean dregs[J]. Environmental Pollution, 2020, 266: 115191. doi: 10.1016/j.envpol.2020.115191 [22] 刘若萱, 贺纪正, 张丽梅. 稻田土壤不同水分条件下硝化/反硝化作用及其功能微生物的变化特征[J]. 环境科学, 2014, (11): 9. [23] 王光飞, 等. 不同有机物料强还原处理对土壤性状影响与防控辣椒疫病效果简[J]. 中国土壤与肥料, 2016. [24] Luciano Silveira M H, et al. Hydrolysis of sugarcane bagasse with enzyme preparations from Acrophialophora nainiana grown on different carbon sources[J]. Biocatalysis and Biotransformation, 2014, 32(1): 53 − 63. doi: 10.3109/10242422.2013.872634 [25] Li H, et al. Transcriptome profilings of two tall fescue (Festuca arundinacea) cultivars in response to lead (Pb) stress[J]. Bmc Genomics, 2017, 18: 145. doi: 10.1186/s12864-016-3479-3 [26] Peiris P U S, et al. Fungal biocontrol against Meloidogyne spp. in agricultural crops: A systematic review and meta-analysis[J]. Biological Control, 2020, 144: 104235. doi: 10.1016/j.biocontrol.2020.104235 [27] Caporusso A, et al. Conversion of cardoon crop residues into single cell oils by Lipomyces tetrasporus and Cutaneotrichosporon curvatus: process optimizations to overcome the microbial inhibition of lignocellulosic hydrolysates[J]. Industrial Crops and Products, 2021, 159: 113030. doi: 10.1016/j.indcrop.2020.113030 [28] Wang L, et al. Comparative Glucose and Xylose Coutilization Efficiencies of Soil-Isolated Yeast Strains Identify Cutaneotrichosporon dermatis as a Potential Producer of Lipid[J]. Acs Omega, 2020, 5(37): 23596 − 23603. doi: 10.1021/acsomega.0c02089 [29] Poldmaa K, Larsson E, Koljalg U. Phylogenetic relationships in Hypomyces and allied genera, with emphasis on species growing on wood-decaying homobasidiomycetes[J]. Canadian Journal of Botany-Revue Canadienne De Botanique, 1999, 77(12): 1756 − 1768. doi: 10.1139/cjb-77-12-1756 [30] Lu J, et al, Fermentation Characteristics of Mortierella alpina in Response to Different Nitrogen Sources[J]. Applied Biochemistry and Biotechnology, 2011, 164(7): 979-990. [31] Qian D, Du G C, Chen J. Isolation and culture characterization of a new polyvinyl alcohol-degrading strain: Penicillium sp WSH02-21[J]. World Journal of Microbiology & Biotechnology, 2004, 20(6): 587 − 591. [32] Ogunbayo A O, Olanipekun O O, Owoade A H. Biodegradation of Certain Polycyclic Hydrocarbons with Paenbacillus Alvei and Penicillum Restricum[J]. Journal of Ecological Engineering, 2018, 19(2): 140 − 148. doi: 10.12911/22998993/81808 [33] Sineli P E, et al. Quantitative proteomic and transcriptional analyses reveal degradation pathway of gamma-hexachlorocyclohexane and the metabolic context in the actinobacterium Streptomyces sp M7[J]. Chemosphere, 2018, 211: 1025 − 1034. doi: 10.1016/j.chemosphere.2018.08.035 [34] Zhou S P, et al. Efficient bio-degradation of food waste through improving the microbial community compositions by newly isolated Bacillus strains[J]. Bioresource Technology, 2021, 321: 124451. doi: 10.1016/j.biortech.2020.124451 -