Effects of Long-term Fertilization on Phosphatase Activities in Paddy and Dryland of Yellow Soil
-
摘要:
目的 明确施肥对黄壤稻田和旱地磷酸酶活性的影响及其主要影响因子。 方法 依托进行了22年的黄壤长期定位试验,研究长期施用化肥和有机肥对稻田和旱地土壤养分及酸性、中性和碱性磷酸酶活性的影响。 结果 长期不同施肥处理显著改变了稻田和旱地土壤养分含量,且土壤pH、有机质和有效磷含量变化因稻田、旱地不同所受影响差异较大。稻田和旱地土壤酸性磷酸酶(ACP)活性和中性磷酸酶(NEP)活性均高于碱性磷酸酶(ALP)活性。与不施肥处理相比,稻田上除个别处理外,施用化肥对磷酸酶活性无显著影响,施用有机肥处理NEP活性显著提高,增幅达15.8% ~ 27.1%;旱地上,长期施用氮肥的处理(NK、NP、NPK)ACP活性显著提高了14.2% ~ 29.0%,ALP活性显著降低了20.1% ~ 50.7%,施用有机肥处理ACP和ALP活性分别提高了11.7% ~ 17.7%和9.4% ~ 56.9%,NEP活性降低了10.5% ~ 32.3%。与平衡施肥处理相比,稻田上缺素施肥对磷酸酶活性影响不显著,施用有机肥处理ACP、NEP、ALP活性分别提高了9.1% ~ 18.5%、6.9% ~ 17.3% 和8.3% ~ 15.0%;旱地上, NK处理ACP和NEP分别显著提高了12.9%和12.9%,PK处理则分别显著降低了16.7%和18.9%,施用有机肥处理NEP活性降低了5.9% ~ 28.9%,ALP活性显著提高了50.1% ~ 115.3%。相关分析表明,NEP活性与各土壤养分含量显著相关,但在稻田和旱地上相关性相反;ALP活性在旱地和稻田上与有机质和微生物量磷均呈显著正相关。通径分析表明,除旱地上ALP活性受pH直接影响作用较大外,其他磷酸酶活性受土壤磷素的直接影响作用均较大。 结论 黄壤稻田和旱地土壤磷酸酶活性与土壤磷素有效性密切相关,稻田上施用有机肥是提高土壤磷酸酶活性的有效途径,旱地上长期施用化学氮肥尤其是氮钾处理可提高ACP活性,增加土壤磷素供应,施用有机肥可通过提高土壤pH增加ALP活性。 Abstract:Objective The effect of fertilization on soil phosphatase activities and its main influencing factors are needed to be clarified. Method Based on a long-term located experiment of yellow soil for 22 years, the effects of long-term application of chemical fertilizer and organic fertilizer on soil nutrients and the activities of acid phosphatase (ACP), neutral phosphatase (NEP) and alkaline phosphatase (ALP) in paddy and dryland soils were studied. Result The results showed that long-term different fertilization treatments significantly changed soil nutrients, and the effects on soil pH, organic matter and available phosphorus were different in paddy and dryland. The activities of ACP and NEP in paddy and dryland soils were higher than that of ALP. Compared with no fertilization treatment, the application of chemical fertilizer had no significant effect on phosphatase activities except for individual treatments in paddy, and the NEP activities in the manure treatments were significantly increased by 15.8% - 27.1%. The NK, NP and NPK treatment in dryland significantly increased ACP activities by 14.2% - 29.0%, but decreased ALP activities by 20.1%-50.7%. The manure treatments increased ACP and ALP activities by 11.7%-17.7% and 9.4% - 56.9%, respectively, but decreased NEP activities by 10.5%-32.3%. Compared with balanced fertilization treatment, the nutrient deficiency fertilization treatments on phosphatase activities were not significant effect in paddy. The manure treatments increased ACP, NEP and ALP activities by 9.1%-18.5%, 6.9%-17.3% and 8.3%-15.0%, respectively. In dryland, NK treatment significantly increased ACP and NEP activities by 12.9% and 12.9%, but PK treatment significantly decreased ACP and NEP activities by 16.7% and 18.9%, and the NEP activities decreased by 5.9%-28.9% and the ALP activities increased by 50.1%-115.3% in manure treatments. Correlation analysis showed that NEP activities were significantly correlated with soil nutrient contents, but the correlation was opposite in paddy and dryland. ALP activities were significantly positively correlated with organic matter and microbial biomass phosphorus in paddy and dryland. Path analysis showed that the phosphatase activities were directly affected by soil phosphorus except ALP activities in dry land directly affected by pH. Conclusion Soil phosphatase activities are closely related to soil phosphorus availability in yellow soil. application of manure is an effective way to improve soil phosphatase activity in paddy. While long-term application of chemical nitrogen fertilizer, especially NK treatment, could improve ACP activities and increase soil phosphorus supply in dryland, and the application of manure could increase ALP activities by increasing soil pH. -
Key words:
- Yellow soil /
- Long-term fertilization /
- Phosphatase activity
-
表 1 不同施肥处理施肥量
Table 1. Nutrient application rates under different fertilization treatments
处理
Treatment鲜牛厩肥(t hm−2)
Cow manureN
(kg hm−2)P2O5
(kg hm−2)K2O
(kg hm−2)CK 0.0 0.0 0.0 0.0 NK 0.0 165.0 0.0 82.5 NP 0.0 165.0 82.5 0.0 PK 0.0 0.0 82.5 82.5 NPK 0.0 165.0 82.5 82.5 M 61.1 165.0 79.4 366.6 0.5MNP 30.6 165.0 81.0 183.3 MNPK 61.1 330.0 161.9 449.1 表 2 长期不同施肥处理土壤养分含量
Table 2. Soil nutrient contents under different long-term fertilizations
土地利用方式
Land use mode处理
TreatmentpH 有机质(g kg−1)
OM全磷(g kg−1)
Total phosphorus有效磷(mg kg−1)
Available phosphorus微生物量磷(mg kg−1)
Microbial biomass phosphorus稻田 CK 7.13 a 47.8 c 0.85 c 12.2 d 4.1 cd NK 6.95 bc 48.7 c 0.84 c 7.4 e 3.2 d NP 6.95 bc 47.6 c 1.07 b 14.7 cd 4.5 cd PK 6.79 c 49.7 c 1.10 b 18.0 c 4.9 c NPK 7.03 ab 47.6 c 1.12 b 14.9 cd 3.5 cd M 6.90 bc 67.3 a 1.08 b 24.3 b 14.9 a 0.5 MNP 6.95 bc 54.7 bc 1.09 b 22.7 b 10.7 b MNPK 6.78 c 61.1 ab 1.48 a 32.8 a 14.8 a 旱地 CK 6.74 ab 46.0 abc 0.71 d 9.9 c 3.0 e NK 5.86 c 35.8 c 0.75 cd 9.4 c 4.5 d NP 5.86 c 36.5 c 1.01 b 27.8 b 4.8 d PK 6.39 bc 41.0 bc 0.96 b 31.3 b 5.7 cd NPK 6.45 bc 37.1 c 0.86 bcd 31.6 b 6.3 c M 7.18 a 57.0 a 0.92 bc 31.3 b 11.6 b 0.5 MNP 6.88 ab 49.5 ab 1.01 b 33.8 b 6.6 c MNPK 7.01 ab 52.9 a 1.35 a 51.0 a 21.4 a 注:同列不同字母表示差异达5%为显著水平。 表 3 土壤磷酸酶活性与土壤养分含量相关系数
Table 3. Correlation coefficients among soil phosphatase activity and soil nutrients
土地利用方式
Land use mode磷酸酶
Phosphatase activitypH 有机质
Soil organic matter全磷
Total phosphorus有效磷
Available phosphorus微生物量磷
Microbial biomass phosphorus稻田 ACP 0.061 0.513* 0.172 0.462* 0.509* NEP −0.537** 0.556** 0.639** 0.639** 0.591** ALP −0.195 0.581** 0.220 0.454* 0.481* 旱地 ACP −0.283 −0.228 0.042 −0.045 0.222 NEP −0.655** −0.713** −0.575** −0.725** −0.731** ALP 0.774** 0.685** 0.199 0.313 0.407* 注:*表示P < 0.05;**表示P < 0.01; 表 4 土壤磷酸酶活性与土壤养分含量等性状间直接通径系数
Table 4. Direct path coefficient between soil phosphatase activity and soil nutrient contents
指标
Index稻田
Paddy旱地
Dryland酸性磷酸酶ACP 中性磷酸酶NEP 碱性磷酸酶ALP 酸性磷酸酶ACP 中性磷酸酶NEP 碱性磷酸酶ALP pH 0.354 −0.201 0.018 −0.410 −0.042 0.572* 有机质 0.422 0.342 0.861 −0.210 −0.407* 0.268 全磷 −0.883* 0.462 −0.783 −0.199 0.312 −0.238 有效磷 1.696* −0.126 1.544* −0.407 −0.553* 0.045 微生物量磷 −0.637 0.008 −1.133 1.029** −0.300 0.113 注:* P < 0.05. -
[1] Condron L M, Turner B L, Cade-Menun B J. Chemistry and dynamics of soil organic phosphorus. In: Sims J, Sharpley A (Eds.), Phosphorus: Agriculture and the Environment[M]. Madison, Wisconsin: USA ASA/CSSA/SSSA, 2005, 87-121. [2] 姜 一, 步 凡, 张 超, 等. 土壤有机磷矿化研究进展[J]. 南京林业大学学报(自然科学版), 2014, 38(3): 160 − 166. [3] 杨艳菊, 王改兰, 张海鹏, 等. 长期施肥条件下栗褐土碱性磷酸酶活性及其与磷形态的关系[J]. 土壤, 2013, 45(4): 678 − 682. [4] 耿玉清, 白翠霞, 赵广亮, 等. 土壤磷酸酶活性及其与有机磷组分的相关性[J]. 北京林业大学学报, 2008, 30(S2): 139 − 143. [5] 沈菊培, 陈利军. 土壤磷酸酶活性对施肥-种植-耕作制度的响应[J]. 土壤通报, 2005, 36(4): 622 − 627. doi: 10.3321/j.issn:0564-3945.2005.04.036 [6] 宋震震, 李絮花, 李 娟, 等. 有机肥和化肥长期施用对土壤活性有机氮组分及酶活性的影响[J]. 植物营养与肥料学报, 2014, 20(3): 525 − 533. doi: 10.11674/zwyf.2014.0302 [7] 李 芳, 信秀丽, 张丛志, 等. 长期不同施肥处理对华北潮土酶活性的影响[J]. 生态环境学报, 2015, (6): 984 − 991. [8] 刘淑英. 有机无机肥配施对灌耕灰钙土碱性磷酸酶和土壤磷素的影响[J]. 土壤通报, 2011, 42(3): 670 − 675. [9] 范淼珍, 尹昌, 范分良, 等. 长期不同施肥对红壤碳, 氮, 磷循环相关酶活性的影响. 应用生态学报, 2015, 26(3): 833-838. [10] 陈 欢, 李 玮, 张存岭, 等. 淮北砂姜黑土酶活性对长期不同施肥模式的响应[J]. 中国农业科学, 2014, 47(3): 495 − 502. doi: 10.3864/j.issn.0578-1752.2014.03.009 [11] 兰 宇, 韩晓日, 杨劲峰, 等. 长期不同施肥棕壤玉米地酶活性的时空变化[J]. 植物营养与肥料学报, 2011, 17(5): 1197 − 1204. doi: 10.11674/zwyf.2011.1075 [12] 陈 闯, 吴景贵, 杨子仪. 不同有机肥及其混施对黑土酶活性动态变化的影响[J]. 水土保持学报, 2014, 28(6): 245 − 250. [13] Speir T W, Cowling J C. Phosphatase activities of pasture plants and soils: Relationship with plant productivity and soil P fertility indices[J]. Biology and Fertility of Soils, 1991, 12(3): 189 − 194. doi: 10.1007/BF00337200 [14] 张艾明, 刘云超, 李晓兰, 等. 水肥耦合对紫花苜蓿土壤磷酸酶活性的影响[J]. 生态学杂志, 2016, 35(11): 2896 − 2902. [15] 柳开楼, 韩天富, 胡惠文, 等. 红壤旱地玉米开花期土壤酶活性对长期施肥的响应[J]. 植物营养与肥料学报, 2018, 24(6): 1610 − 1618. doi: 10.11674/zwyf.18155 [16] 夏文建, 柳开楼, 张丽芳, 等. 长期施肥对红壤稻田土壤微生物生物量和酶活性的影响[J]. 土壤学报, 2021, 58(3): 628 − 637. [17] 鲁如坤. 土壤农化分析[M]. 中国农业科技出版社, 1999. [18] Frossard E, Condron L M, Oberson A, et al. Processes goveming phosphorus availability in temperate soils[J]. Journal of Environmental Quality, 2000, 29(1): 15 − 23. [19] Dinkelaker B, Marschner H. In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants[J]. Plant and Soil, 1992, 144(2): 199 − 205. doi: 10.1007/BF00012876 [20] Krämer S, Green D M. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland[J]. Soil Biology and Biochemistry, 2000, 32(2): 179 − 188. doi: 10.1016/S0038-0717(99)00140-6 [21] Romanyà J, Blanco-Moreno J M, Sans F X. Phosphorus mobilization in low-P arable soils may involve soil organic C depletion[J]. Soil Biology and Biochemistry, 2017, 113: 250 − 259. doi: 10.1016/j.soilbio.2017.06.015 [22] Nannipieri P, Giagnoni L, Landi L, et al. Role of phosphatase enzymes in soil. In: Bünemann E K, Oberson A, Frossard E (Eds.), Phosphorus in Action [M]. Berlin Heidelberg: Springer International Publishing, 2011, 215-243. [23] Ekenler M, Tabatabal M A. Responses of phosphatase and arylsulfatase in soil to liming and tillage systems[J]. Journal of Plant Nutrition and Soil Science, 2003, 166(3): 281 − 290. doi: 10.1002/jpln.200390045 [24] 马晓霞, 王莲莲, 黎青慧, 等. 长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响. 生态学报, 2012, 32(17): 5502-5511. [25] 王树起, 韩晓增, 乔云发, 等. 长期施肥对东北黑土酶活性的影响[J]. 应用生态学报, 2008, 19(3): 551 − 556. [26] 陈梅生, 尹 睿, 林先贵, 等. 长期施有机肥与缺素施肥对潮土微生物活性的影响[J]. 土壤, 2009, 41(6): 957 − 961. doi: 10.3321/j.issn:0253-9829.2009.06.019 [27] 王冬梅, 王春枝, 韩晓日, 等. 长期施肥对棕壤主要酶活性的影响[J]. 土壤通报, 2006, 37(2): 264 − 267. [28] 李 渝, 刘彦伶, 白怡婧, 等. 黄壤稻田土壤微生物生物量碳磷对长期不同施肥的响应[J]. 应用生态学报, 2019, 30(4): 1327 − 1334. [29] Margalef O, Sardans J, Maspons J, et al. The effect of global change on soil phosphatase activity[J]. Global Change Biology, 2021, 22(27): 5989 − 6003. [30] 于群英. 土壤磷酸酶活性及其影响因素研究[J]. 安徽技术师范学院学报, 2001, 15(4): 5 − 8. [31] 袁 亮, 李絮花, 李 润, 等. 设施栽培土壤磷酸酶活性及其与土壤养分的关系[J]. 山东农业科学, 2007, (2): 80 − 83. doi: 10.3969/j.issn.1001-4942.2007.02.028 [32] 田沐雨, 于春甲, 汪景宽, 等. 氮添加对草地生态系统土壤pH、磷含量和磷酸酶活性的影响[J]. 应用生态学报, 2020, 31(9): 2985 − 2992. [33] 刘彦伶, 李 渝, 张 艳, 等. 长期使用磷肥和有机肥黄壤生物量磷特征[J]. 中国农业科学, 2021, 54(6): 1188 − 1198. doi: 10.3864/j.issn.0578-1752.2021.06.010 [34] 刘彦伶, 李 渝, 白怡婧, 等. 长期不同施肥对水稻干物质和磷素积累与转运的影响[J]. 植物营养与肥料学报, 2019, 25(07): 1146 − 1156. -