Effects of Combined Application of Organic and Inorganic Fertilizers on Soil Microorganisms in Continuous Cropping in Solar Greenhouse
-
摘要:
目的 为解决日光温室番茄连作障碍,必须弄清有机无机肥配施对番茄连作土壤微生物的影响。 方法 试验共设置6个处理,分别为不施肥(CK)、20%有机肥 + 80%化肥(M20C80)、40%有机肥 + 60%化肥(M40C60)、60%有机肥 + 40%化肥(M60C40)、80%有机肥 + 20%化肥(M80C20)、100%有机肥 + 0%化肥(M100)。测定了连作土壤理化性质、细菌和真菌的微生物群落结构、物种组成和丰度等相关指标。 结果 M40C60处理使连作土壤孔隙度在54.38% ~ 55.61%,pH维持在7.19 ~ 7.22,有机质和速效钾含量分别维持在49.70 ~ 59.21 g kg−1和536.1 ~ 605.5 mg kg−1的中等水平,速效磷含量则维持在680.4 ~ 783.0 mg kg−1的高水平。增施有机肥,可以改善土壤微生物群落组成,分别提高芽孢杆菌(Bacillus)、土胞杆菌(Terrisporbacter)、链霉菌(Streptomyces)以及头束霉菌(Cephalotrichum)等有益菌群落相对丰度0.86%、0.60%、0.12%和47.82%,降低变形菌(Proteobacteria)酸杆菌(Acidobacteriota)等有害菌群落相对丰度3.47%和1.74%。 结论 增施有机肥改善番茄连作土壤的基础理化性质,保持土壤中的养分含量。同时有益于微生物群落演替,维持或提高有益菌群的丰度,抑制或降低有害菌群的丰度,使连作土壤维持在一个较稳定的微生物群落结构。减少番茄连作土壤病害的发生,维持良好的土壤状态。 Abstract:Objective In order to solve the obstacles of tomato continuous cropping in solar greenhouse, the effects of combined application of organic and inorganic fertilizers on soil microorganisms of tomato continuous cropping were studied. Method Six treatments were set up: no fertilization (CK), 20% organic fertilizer + 80% chemical fertilizer (M20C80), 40% organic fertilizer + 60% chemical fertilizer (M40C60), 60% organic fertilizer + 40% chemical fertilizer (M60C40), 80% organic fertilizer + 20% chemical fertilizer (M80C20),100% organic fertilizer + 0% chemical fertilizer (M100). The physical and chemical properties of soil, microbial community structure, species composition and abundance of bacteria and fungi were measured. Results The results showed that M40C60 maintained the soil porosity at 54.38%-55.61%, pH at 7.19-7.22, the contents of organic matter and available potassium at 49.70-59.21 g kg−1 and 536.08-605.49 mg kg−1, respectively, and the content of available phosphorus at 680.41-782.96 mg kg−1. Increasing the application of organic fertilizer improved the composition of soil microbial community, and increased the relative abundance of beneficial bacterial communities, such as Bacillus, Terrisporbacter, Streptomyces and Cephalotrichum by 0.86%, 0.60%, 0.12% and 47.82%, respectively. The relative abundance of harmful bacterial communities such as Proteobacteria and Acidobacteriota was reduced by 3.47% and 1.74%. Conclusions Increasing the application of organic fertilizer is beneficial to improve the soil physical and chemical properties under tomato continuous cropping, to maintain the nutrient contents at the same time. It is beneficial to the succession of microbial community, maintain or improve the abundance of beneficial flora, inhibit or reduce the abundance of harmful flora, maintain the continuous cropping soil in a relatively stable microbial community structure and reduce the occurrence of soil diseases under tomato continuous cropping, maintain good soil condition. -
表 1 供试土壤基础理化性质
Table 1. Physical and chemical properties of tested soil
土壤质地
Soil texture容重
Bulk density
(g cm−3)孔隙度
Porosity
(%)pH EC
(mS cm−1)有机质
Organic matter
(g kg−1)全氮
Total N
(g kg−1)速效磷
Available P
(mg kg−1)速效钾
Available K
(mg kg−1)砂壤土 1.29 ± 0.01 51.10 ± 0.39 7.50 ± 0.01 1.31 ± 0.01 40.98 ± 0.60 2.29 ± 0.02 121.13 ± 0.05 161.08 ± 1.55 表 2 有机无机肥配施处理施肥量
Table 2. The amounts of organic and inorganic fertilizer applications
处理
Treatment有机肥(kg hm−2)
Organic manure化肥(kg hm−2)
Chemical fertilizer总养分(N-P2O5−K2O, kg hm−2)
Total nutrientCK 0 0 0 M20C80 5785.7 3240.0 607.5-347.3-816.9 M40C60 11571.3 2430.0 M60C40 17357.0 1620.0 M80C20 23142.6 810.0 M100 28928.3 − 表 3 日光温室连作土壤基础理化性质
Table 3. Physical and chemical properties of continuous cropping soil in solar greenhouse
处理
Treatment茬口
Stubble容重
Bulk density
(g cm−3)孔隙度
Porosity
(%)pH EC
(mS cm−1)有机质
Organic matter
(g kg−1)全氮
Total N
(g kg−1)速效磷
Available P
(mg kg−1)速效钾
Available K
(g kg−1)CK 2019S 1.30 a 50.06 kl 7.50 c 1.05 hi 38.8 i 1.63 j 183.18 j 162.20 j 2019A 1.31 a 49.70 l 7.63 b 1.03 i 31.72 j 1.84 i 132.71 k 110.55 k 2020S 1.31 a 49.29 l 7.74 a 1.02 i 29.72 j 2.22 h 112.99 k 96.01 k M20C80 2019S 1.24 b 51.66 ijk 7.45 cd 1.06 hi 43.3 h 2.29 h 582.68 de 438.91 i 2019A 1.22 b 51.09 jkl 7.43 cde 1.07 gh 44.43 h 2.32 h 608.16 d 466.40 hi 2020S 1.23 b 52.48 hij 7.40 d 1.10 fgh 48.08 g 2.35 h 668.36 c 488.35 h M40C60 2019S 1.15 c 53.45 ghi 7.33 e 1.10 fgh 49.70 g 2.54 g 680.41 c 536.08 g 2019A 1.15 c 54.38 fgh 7.22 fg 1.12 f 54.92 f 2.74 f 736.69 b 569.23 fg 2020S 1.12 cde 55.61 cdef 7.19 fg 1.18 e 59.21 de 2.84 ef 782.96 a 605.49 de M60C40 2019S 1.15 c 54.91 efg 7.32 e 1.18 e 53.7 f 2.94 de 477.95 g 585.19 ef 2019A 1.13 cd 54.94 efg 7.24 f 1.19 e 60.66 d 3.03 cd 559.33 e 623.68 d 2020S 1.09 f 56.63 bcde 7.19 g 1.23 d 63.96 bc 3.08 bcd 655.75 c 661.72 c M80C20 2019S 1.13 cd 55.11 defg 7.35 e 1.28 c 56.49 ef 3.16 abc 421.96 h 621.70 d 2019A 1.11 def 57.00 abcd 7.2 g 1.33 ab 61.85 cd 3.2 ab 503.67 fg 669.77 bc 2020S 1.09 f 57.49 abc 7.16 gh 1.29 bc 64.97 ab 3.2 ab 609.41 d 712.43 a M100 2019S 1.10 ef 56.58 bcde 7.30 ef 1.31 abc 56.51 ef 3.21 ab 416.84 h 626.39 d 2019A 1.09 f 58.07 ab 7.12 h 1.34 a 64.52 bc 3.24 ab 384.35 i 720.12 a 2020S 1.05 g 58.69 a 7.12 h 1.35 a 67.91 a 3.27 a 511.97 f 697.42 ab 注:表中同列不同小写字母表示不同处理间差异达 P < 0.05显著水平。 -
[1] 孙 锦, 高洪波, 田 婧, 等. 我国设施园艺发展现状与趋势[J]. 南京农业大学学报, 2019, 42(4): 594 − 604. [2] 张金锦, 段增强. 设施菜地土壤次生盐渍化的成因、危害及其分类与分级标准的研究进展[J]. 土壤, 2011, 43(3): 361 − 366. [3] 张真和. 农用塑料技术在设施园艺产业中的应用与发展[J]. 中国蔬菜, 2015, (7): 1 − 5. doi: 10.3969/j.issn.1000-6346.2015.07.001 [4] 史 静, 张乃明, 包 立. 我国设施农业土壤质量退化特征与调控研究进展[J]. 中国生态农业学报, 2013, 21(7): 787 − 794. [5] Yang L Q, Huang B, Miao M C, et al. Sustainability assessment of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China.[J]. Environmental science and pollution research international, 2016, 23(17): 17287 − 97. doi: 10.1007/s11356-016-6937-1 [6] 耿 贵, 杨瑞瑞, 於丽华, 等. 作物连作障碍研究进展[J]. 中国农学通报, 2019, 35(10): 36 − 42. doi: 10.11924/j.issn.1000-6850.casb18110045 [7] 卢维宏, 张乃明, 包 立, 等. 我国设施栽培连作障碍特征与成因及防治措施的研究进展[J]. 土壤, 2020, 52(4): 651 − 658. [8] 邹春娇, 张勇勇, 张一鸣, 等. 生物炭对设施连作黄瓜根域基质酶活性和微生物的调节[J]. 应用生态学报, 2015, 26(6): 1772 − 1778. [9] 张国显, 范永怀, 赵凤艳, 等. 化肥减量配施有机物料对设施番茄生长、光合特性、产量及品质的影响[J]. 中国科技论文, 2018, 13(6): 698 − 703. doi: 10.3969/j.issn.2095-2783.2018.06.016 [10] 杨 阳, 宋炳彦, 刘 云, 等. 氮磷钾配比对日光温室番茄产量和品质的影响[J]. 华北农学报, 2018, 33(S1): 191 − 194. doi: 10.7668/hbnxb.2018.S1.031 [11] 刘会芳, 韩宏伟, 王 强, 等. 不同蔬菜与番茄轮作对设施土壤微生物多样性、酶活性及土壤理化性质的影响[J]. 微生物学报, 2021, 61(1): 167 − 182. [12] 高青海, 贾双双, 郭远远. 秸秆集中深还田对设施连作土壤微生物区系和甜瓜根系生长的影响[J]. 生态学杂志, 2016, 35(6): 1447 − 1452. [13] 蒋静静, 屈 锋, 苏春杰, 等. 不同肥水耦合对黄瓜产量品质及肥料偏生产力的影响[J]. 中国农业科学, 2019, 52(1): 86 − 97. [14] 徐 阳. 杏鲍菇菇渣袋培番茄复合基质配方及栽培效果研究[D]. 沈阳农业大学, 2019. [15] 萨日娜, 陈立新, 王 娟, 等. 不同有机堆肥对番茄产量、品质和土壤性状的影响[J]. 北方园艺, 2020, (22): 42 − 47. [16] 王 辉, 刘 丽, 黄宇飞, 等. 辽宁设施辣椒连作根系土壤特性及微生物区系结构特征[J]. 沈阳农业大学学报, 2021, 52(3): 272 − 278. [17] 韩海蓉, 李 屹, 陈来生, 等. 设施辣椒连作对土壤理化性状、酶活性及微生物区系的影响[J]. 中国土壤与肥料, 2021, (3): 237 − 242. [18] 王燕云, 赵龙杰, 郝春莉, 等. 生物有机肥对不同连作年限设施黄瓜土壤微生物数量和酶活性的影响[J]. 浙江农业学报, 2019, 31(4): 631 − 638. doi: 10.3969/j.issn.1004-1524.2019.04.16 [19] 贾喜霞, 师桂英, 黄 炜, 等. 土壤消毒剂配施微生物有机肥及生防菌剂缓解设施茄子连作障碍的作用效应微生物菌剂[J]. 分子植物育种, 2020, 18(13): 4492 − 4498. [20] 全国农业技术推广服务中心. 土壤分析技术规范[M]. 2版. 北京: 中国农业出版社, 2006. [21] Liu X, Li Y J, Ren X J, et al. Long-Term Greenhouse Cucumber Production Alters Soil Bacterial Community Structure[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(8) [22] 李靖宇, 张肖冲, 田兴国, 等. 压砂地硒砂瓜自根苗/嫁接苗不同连作方式土壤微生物群落结构比较[J/OL]. 生态学杂志: 1 − 112021-09-17].https://doi.org/10.13292/j.1000-4890.202111.009. [23] 田给林. 连作草莓土壤酚酸类物质的化感作用及其生物调控研究[D]. 中国农业大学, 2015. [24] 曹 佳, 王 冲, 皇 彦, 等. 蚯蚓对土壤微生物及生物肥力的影响研究进展[J]. 应用生态学报, 2015, 26(5): 1579 − 1586. doi: 10.13287/j.1001-9332.20150302.008 [25] 王江伟, 张光雨, 余成群. 有机肥和无机肥对土壤微生物群落影响的整合分析(英文)[J]. Journal of Resources and Ecology, 2020, 11(3): 298 − 303. [26] 王瑞飞, 王 妍, 姜 恬, 等. 连作地黄根际土壤中固氮耐酚酸细菌的分离鉴定[J]. 江苏农业科学, 2017, 45(10): 229 − 232. [27] 庞师婵, 王帅帅, 张文静, 等. 氮肥/花生饼肥配施对番茄根际土壤及根系内生细菌群落结构的影响[J]. 华中农业大学学报, 2021, 40(3): 141 − 151. [28] 吕金朋, 张文丽, 张 晔, 等. 人参连作障碍土壤改良技术的重金属及农残评价研究(续)[J]. 吉林中医药, 2020, 40(10): 1357 − 1359. [29] Li X Q, Meng D L, Li J, et al. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination[J]. Environmental Pollution, 2017: [30] 沃惜慧. 设施土壤重金属积累现状及污染评价[D]. 沈阳农业大学, 2019. DOI: 10.27327/d.cnki.gshnu.2019.000270. [31] Liu Q J, Chen Z W, Tang J P, et al. Cd and Pb immobilisation with iron oxide/lignin composite and the bacterial community response in soil[J]. Science of the Total Environment, 2022: 802. [32] Ravenschlag K, Sahm K, Pernthaler J, et al. High bacterial diversity in permanently cold marine sediments.[J]. Applied and environmental microbiology, 1999, 65(9): 3982 − 9. doi: 10.1128/AEM.65.9.3982-3989.1999 [33] Zhang B L, Wu X K, Zhang S Y, et al. The diversity and biogeography of the communities of Actinobacteria in the forelands of glaciers at a continental scale[J]. Environmental Research Letters, 2016, 11(5) [34] 程 扬, 刘子丹, 沈启斌, 等. 秸秆生物炭施用对玉米根际和非根际土壤微生物群落结构的影响[J]. 生态环境学报, 2018, 27(10): 1870 − 1877. [35] 严佳成, 李艳如, 陈让让, 等. 植物内生放线菌研究进展[J]. 生物资源, 2020, 42(01): 9 − 21. [36] 李晨华, 张彩霞, 唐立松, 等. 长期施肥土壤微生物群落的剖面变化及其与土壤性质的关系[J]. 微生物学报, 2014, 54(3): 319 − 329. [37] 姜 伟, 白红梅, 薛国萍, 等. 基于高通量测序的设施连作果类菜根际土壤细菌群落结构和多样性分析[J]. 华北农学报, 2021, 36(4): 82 − 89. [38] Wang R, Zhang H C, Sun L G, et al. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak.[J]. Scientific reports, 2017, 7(1): 343. doi: 10.1038/s41598-017-00472-6 [39] Qin B Z, Zhao C S , Shi T R , et al. Accumulation, regional distribution, and environmental effects of Sb in the largest Hg–Sb mine area in Qinling Orogen, China[J]. Science of The Total Environment, 2021. [40] Jiang J S, Wang Y, Liu J, et al. Exploring the mechanisms of organic matter degradation and methane emission during sewage sludge composting with added vesuvianite: Insights into the prediction of microbial metabolic function and enzymatic activity[J]. Bioresource Technology, 2019: 286. [41] Zhang R, Chen L J, Niu Z R, et al. Water stress affects the frequency of Firmicutes, Clostridiales and Lysobacter in rhizosphere soils of greenhouse grape[J]. Agricultural Water Management, 2019: 226. [42] 杜宇佳, 高广磊, 陈丽华, 等. 土壤微生物膜对风沙土固沙保水特性的影响[J]. 农业工程学报, 2020, 36(17): 98 − 105. doi: 10.11975/j.issn.1002-6819.2020.17.012 [43] Wu X, Peng J, Liu P, et al. Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments[J]. Science of The Total Environment, 2021, 785: 147329. doi: 10.1016/j.scitotenv.2021.147329 [44] 陈海生, 刘守平, 梁国钱. 水旱轮作对滩涂绿花椰菜根际土壤真菌群落结构的影响[J]. 菌物学报, 2021, 40(9): 2254 − 2265. doi: 10.13346/j.mycosystema.210108 [45] 严吉明, 叶华智. 蚕豆油壶菌火肿病的发生规律[J]. 四川农业大学学报, 2012, 30(3): 319 − 325. doi: 10.3969/j.issn.1000-2650.2012.03.010 [46] 姜于兰, 刘会梅, 张天宇. 头束霉属2个中国新记录种[J]. 菌物研究, 2011, 9(2): 63 − 64 + 76. doi: 10.3969/j.issn.1672-3538.2011.02.001 [47] 江 北, 吕梦霞, 蒋冬花. 曲霉属真菌活性代谢产物及在农业生产中的应用研究进展[J]. 微生物学杂志, 2019, 39(2): 103 − 110. doi: 10.3969/j.issn.1005-7021.2019.02.016 -