Effects of No Tillage Straw Returning on Soil Microbial Community Composition in the West Liaohe Plain
-
摘要:
目的 针对干旱半干旱西辽河平原区农田耕层存在的土壤质量问题,揭示不同免耕秸秆还田方式对土壤微生物类群分布特征的影响。 方法 设置浅旋秸秆不还田农户模式(CK)、免耕秸秆秋覆还田(MG)、免耕秸秆秋覆春二次粉碎还田(ME)、免耕秸秆秋覆春配施秸秆腐熟剂还田(MF)、免耕秸秆秋覆春二次粉碎配施秸秆腐熟剂还田(EF)5个处理,用田间小区试验的方法,研究免耕和不同秸秆还田方式对土壤微生物群落组成的影响。 结果 0 ~ 15 cm土层中4种免耕秸秆还田方式降低细菌操作分类单元数;15 ~ 30 cm土层中MF和EF细菌操作分类单元数较高,MF中增加节杆菌属(Arthrobacter)、芽单胞菌属(Gemmatimonas)和假平胞菌属(Sphingomonas)相对丰度,EF中增加Haliangium、溶杆菌属(Lysobacter)、Subgroup_10、Alistipes和拟杆菌属(Bacteroides)相对丰度;30 ~ 45 cm土层中4种秸秆还田方式均增加细菌操作分类单元数,增加了节杆菌属、拟杆菌属、Gaiella、硝化螺旋菌属 (Nitrospira) 相对丰度,但减少了Alistipes、Escherichia-shigella相对丰度。4种免耕秸秆还田方式降低0 ~ 15 cm土层真菌操作分类单元数,但增加15 ~ 45 cm土层真菌操作分类单元数;4种免耕秸秆还田方式降低了外瓶霉属(Exophiala)和被孢霉属(Mortierella)相对丰度,秸秆还田中新出现丝状真菌柄孢霉(Podospora)、角菌根菌属(Ceratobasidium)、Archaeorhizomyces,配施秸秆腐熟剂的2个处理新出现了粉褶蕈属(Entoloma),并增加了裂壳菌属(Schizothecium)的相对丰度。试验区能对生长环境产生较大影响的细菌比真菌多。从细菌多样性看,免耕秸秆秋覆春配施秸秆腐熟剂还田后增加了产黄菌属(Flavobacterium)、Ruminococcus__gnavus_group、Methylophilaceae相对丰度,ME和EF对产黄菌属和Methylophilaceae相对丰度增加幅度较大;从真菌多样性看,CK中Mrakia和Myceliophthora物种相对丰度较高,MF中Peristomialis和Powellomyces 物种相对丰度较高,EF中Cercophora和Scytalidium物种相对丰度较高。 结论 免耕秸秆秋覆春二次粉碎还田及其施用腐熟剂措施可增加降解纤维素功能菌及菌根真菌多样性及相对丰度,对于西辽河平原雨养区春玉米田土壤微生物多样性、丰富度的提升具有积极作用。 Abstract:Objective The distribution characteristics of soil microbial groups were revealed in arid and semi-arid areas, in order to provide theoretical support for the construction of the technology model of straw mulching and no tillage sowing in rain cultivation area of West Liaohe plain. Method Five treatments were set up: no-tillage with shallow rotation (CK) , straw mulching in autumn and no-tillage in spring (MG) , no-tillage with straw mulching in autumn and secondary crushing in spring (ME) , no-tillage with straw mulching in autumn and application of saprophyte in spring(MF) , and no-tillage with straw mulching in autumn and straw secondary crushing application of saprophyte in spring (EF), the effects of different ways of returning straw to soil on soil microorganism were studied. Result The results showed that the number of operational taxonomic unit (OTU) was decreased by returning straw to soil in 0-15 cm soil layer. The number of OTU of MF and EF bacteria in 15-30 cm soil layer was higher, the relative abundance rates of Arthrobacter, Gemmatimonas and Sphingomonas in MF was increased, the relative abundance rates of Haliangium, Lysobacter, Subgroup_10, Alistes and Bacteroides in EF were increased. The numbers of bacteria OTU, Arthrobacter, Bacteroidetes, Gaiella and Nitrispira were increased, but the relative abundance rates of Alistes and Escherichia-shigella were decreased in 30-45 cm soil layer. Straw returning reduced the number of soil fungi OTU in surface soil (0-15 cm), but increased the number of OTU in 15-45 cm soil. Straw returning reduced the relative abundance rates of Exophiala and Mortierella. Podospora, Ceratobasidium and Archaeorhizomyces appeared in straw returning. Entoloma and Schizomyceum appeared in the application of ripening agent, and increased the relative abundance rates of Schizomyceum. There were more bacteria than fungi that could have a great impact on the environment in the test area. In terms of bacterial diversity, the relative abundance rates of Flavobacterium, Ruminococcus_gnavus_group, Methylophilaceae were increased after no tillage returned straw to the field and decomposition agent. ME and EF increased the relative abundance rates of Flavobacterium and Methylophilaceae significantly. In terms of fungal diversity, the relative abundance rate of Mrakia and Myceliophthera in CK was higher, the relative abundance rates of Peristomalis and Powellomyces in MF was higher, and the relative abundance rates of Cercophora and Scytalidium species in EF was higher. Conclusion The patterns of no-tillage straw returning to the field in autumn and spring with secondary crushing and application of decomposing agents can increase the diversity and relative abundance of cellulose-degrading functional bacteria and mycorrhizal fungi, which plays a positive role in improving the soil microbial diversity and richness of spring maize field in the rain-fed area of West Liaohe plain. -
Key words:
- No tillage and mulching /
- Straw decomposition agent /
- Soil microorganism
-
表 1 试验设计与方法
Table 1. Experimental design and method
编号
Code处理
Treatment耕作方式
Farming patternCK 浅旋秸秆不还田农户模式 秋收秸秆移出田块-翌年春季旋耕整地-施肥、播种-中耕、除草-追施氮肥-虫害防
控-立秆直收籽粒MG 免耕秸秆秋覆还田 适时机收-秸秆覆盖过
冬-免耕施肥、播种-中耕、除草-追施氮肥-虫害防控-立秆直收籽粒MF 免耕秸秆秋覆春配施秸秆腐熟剂还田 适时机收-秸秆覆盖过冬-春季配施秸秆腐熟剂-免耕施肥、播种-中耕、除草-追施氮肥-虫害防控-立秆直收籽粒 ME 免耕秸秆秋覆春二次粉碎还田 适时机收-秸秆覆盖过冬-春季秸秆二次粉碎,秸秆长度 ≤ 10 cm,且要求均匀抛撒在地表-免耕施肥、播种-中耕、除草-追施氮肥-虫害防控-立秆直收籽粒 EF 免耕秸秆秋覆春二次粉碎配施秸秆腐熟剂还田 适时机收-秸秆覆盖过冬-春季秸秆二次粉碎配施腐熟剂,秸秆长度 ≤ 10 cm,且要求均匀抛撒在地表-免耕施肥、播种-中耕、除草-追施氮肥-虫害防控-立秆直收籽粒 表 2 每个处理样本的分组和编号
Table 2. The groups and codes of soil samples in treatments
土层深度
Soil depthCK MG MF ME EF 0 ~ 15 cm CK1 MG1 MF1 ME1 EF1 15 ~ 30 cm CK2 MG2 MF2 ME2 EF2 30 ~ 45 cm CK3 MG3 MF3 ME3 EF3 表 3 各处理对春玉米产量构成因素的影响
Table 3. Effects of different treatments on yield components of spring maize
处理
Treatment穗长 (cm)
Ear length秃尖长 (cm)
Bare tip length穗粒数 (粒)
Grains/ ear千粒重 (g)
1000-Grain Weight产量 (kg hm−2)
YieldCK 13.47 Bb 1.41 Aa 423.67 Ab 332.61 Bb 10474.51 Aa MG 14.10 Aa 1.36 Aa 447.67 Aa 338.85 Bb 10989.72 Aa ME 13.86 ABab 1.35 Aa 424.33 Ab 357.68 Aa 11034.61 Aa MF 13.96 ABa 1.29 Aa 437.33 Aab 338.62 Bb 10871.18 Aa EF 13.91 ABab 1.25 Aa 436.33 Aab 354.56 Aa 11073.40 Aa 注:不同大小写字母分别表示处理间差异达到0.01显著水平和0.05显著水平。 -
[1] Hao X Y, He W, Shu Kee Lam, et al. Enhancement of no-tillage, crop straw return and manure application on field organic matter content overweigh the adverse effects of climate change in the arid and semi-arid Northwest China[J]. Agricultural and Forest Meteorology, 2020, 295: 108199. doi: 10.1016/j.agrformet.2020.108199 [2] Dai Z J, Hu J S, Fan J, et al. No-tillage with mulching improves maize yield in dryland farming through regulating soil temperature, water and nitrate-N[J]. Agriculture, Ecosystems and Environment, 2021, 309: 107288. doi: 10.1016/j.agee.2020.107288 [3] Shakoor A, Shahbaz M, Farooq T H, et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage[J]. Science of the Total Environment, 2021, 750: 142299. doi: 10.1016/j.scitotenv.2020.142299 [4] Souza M, Júnior V M, Kurtz C, et al. Soil chemical properties and yield of onion crops grown for eight years under no-tillage system with cover crops[J]. Soil & Tillage Research, 2021, 208: 104897. [5] Wulanningtyas H S, Gong Y T, Li P R, et al. A cover crop and no-tillage system for enhancing soil health by increasing soil organic matter in soybean cultivation[J]. Soil & Tillage Research, 2021, 205: 104749. [6] Brown J L, Stobart R, Hallett P D, et al. Variable impacts of reduced and zero tillage on soil carbon storage across 4–10 years of UK field experiments[J]. Journal of Soils and Sediments, 2021, 21(2): 890 − 904. doi: 10.1007/s11368-020-02799-6 [7] Silva P C G D, Tiritan C S, Echer F R, et al. No-tillage and crop rotation increase crop yields and nitrogen stocks in sandy soils under agroclimatic risk[J]. Field Crops Research, 2020, 258: 107947. doi: 10.1016/j.fcr.2020.107947 [8] Barbosa F T, Bertol I, Wolschick N H, et al. The effects of previous crop residue, sowing direction and slope length on phosphorus losses from eroded sediments under no-tillage[J]. Soil and Tillage Research, 2021, 206: 104780. doi: 10.1016/j.still.2020.104780 [9] Jabro J D, Allen B L, Rand T, et al. Effect of previous crop roots on soil compaction in 2 yr rotations under a no-tillage system[J]. Land, 2021, 10(2): 202. doi: 10.3390/land10020202 [10] Ignacio B, José M A, José D P, et al. Soil management in semi-arid vineyards: Combined effects of organic mulching and no-tillage under different water regimes[J]. European Journal of Agronomy, 2021, 123: 126198. doi: 10.1016/j.eja.2020.126198 [11] Filipe B K, Héctor M, Lilia F P, et al. Influence of edaphic and management factors on soils aggregates stability under no-tillage in Mollisols and Vertisols of the Pampa Region, Argentina[J]. Soil & Tillage Research, 2021, 209: 104901. [12] Yin T, Zhao C X, Yan C R, et al. Inter-annual changes in the aggregate-size distribution and associated carbon of soil and their effects on the straw-derived carbon incorporation under long-term no-tillage[J]. Journal of Integrative Agriculture, 2018, 17(11): 2546 − 2557. doi: 10.1016/S2095-3119(18)61925-2 [13] 董立国, 袁汉民, 李生宝, 等. 玉米免耕秸秆覆盖对土壤微生物群落功能多样性的影响[J]. 生态环境学报, 2010, 19(2): 444 − 446. doi: 10.3969/j.issn.1674-5906.2010.02.036 [14] 曹文亮, 张丽华, 王 静. 免耕与覆盖对土壤微生物生理类群的影响[J]. 甘肃农业大学学报, 2008, 43(6): 123 − 126. doi: 10.3969/j.issn.1003-4315.2008.06.028 [15] 高云超, 朱文珊, 陈文新. 多点接种方法计数土壤细菌生理类群的研究[J]. 微生物学通报, 2001, (4): 1 − 4. doi: 10.3969/j.issn.0253-2654.2001.04.001 [16] 周子军, 郭松, 陈琨, 等. 长期秸秆覆盖对免耕稻-麦产量、土壤氮组分及微生物群落的影响[J/OL]. 土壤学报: 1 − 13[2022-01-25]. http://kns.cnki.net/kcms/detail/32.1119.P.20210629.1431.006.html. [17] 高云超, 朱文珊, 陈文新. 秸秆覆盖免耕土壤细菌和真菌生物量与活性的研究[J]. 生态学杂志, 2001, (2): 30 − 36. doi: 10.3321/j.issn:1000-4890.2001.02.009 [18] 张贵云, 吕贝贝, 张丽萍, 等. 黄土高原旱地麦田26年免耕覆盖对土壤肥力及原核微生物群落多样性的影响[J]. 中国生态农业学报(中英文), 2019, 27(3): 358 − 368. [19] 张建军, 党 翼, 赵 刚, 等. 留膜留茬免耕栽培对旱作玉米田土壤养分、微生物数量及酶活性的影响[J]. 草业学报, 2020, 29(2): 123 − 133. doi: 10.11686/cyxb2019403 [20] 王小玲. 免耕覆盖有机肥施用对作物产量及土壤微生物群落组成的影响[D]. 宁夏大学, 2019. [21] Du K, Li F D, Qiao Y F, et al. Influence of no-tillage and precipitation pulse on continuous soil respiration of summer maize affected by soil water in the North China Plain[J]. Science of the Total Environment, 2020, 766: 144384. [22] Gómez R P, Aulicino M B, Mónaco C I, et al. Impact of different cropping conditions and tillage practices on the soil fungal abundance of a Phaeozem luvico[J]. Spanish Journal of Agricultural Research, 2015, 13(2): 1102. doi: 10.5424/sjar/2015132-6556 [23] 李春艳, 李大鹏, 侯 宁, 等. 一种生活垃圾低温高效降解功能复合菌剂及其制备方法和应用[P], 中国: CN104611267A: 2015-05-13. [24] Zhao F Y, Zhang Y Y, Dong W G, et al. Vermicompost can suppress Fusarium oxysporum f. sp. lycopersici via generation of beneficial bacteria in a long-term tomato monoculture soil[J]. Plant and Soil, 2019, 440(1-2): 491 − 505. doi: 10.1007/s11104-019-04104-y [25] 阎海涛, 殷全玉, 丁松爽, 等. 生物炭对褐土理化特性及真菌群落结构的影响[J]. 环境科学, 2018, 39(5): 2412 − 2419. [26] Li H, Zhang Y Y, Yang S, et al. Variations in soil bacterial taxonomic profiles and putative functions in response to straw incorporation combined with N fertilization during the maize growing season[J]. Agriculture, Ecosystems & Environment, 2019, 283: 106578. [27] 段双全, 格桑曲珍, 普 布, 等. 西藏羊八井废弃热井沉积物中的真核微生物多样性[J]. 微生物学通报, 2013, 40(11): 1987 − 1995. [28] Huang F Y, Liu Z H, Mou H Y, et al. Effects of different long-term farmland mulching practices on the loessial soil fungal community in a semiarid region of China[J]. Applied Soil Ecology, 2019, 137: 111 − 119. doi: 10.1016/j.apsoil.2019.01.014 [29] Liu Q W, Wang S X, Li K, et al. Responses of soil bacterial and fungal communities to the long-term monoculture of grapevine[J]. Applied Microbiology and Biotechnology, 2021, 105(8): 1 − 16. [30] Niu G X, Muqier H, Wang R Z, et al. Soil microbial community responses to long-term nitrogen addition at different soil depths in a typical steppe[J]. Applied Soil Ecology, 2021: 167. [31] 张利平, 黄振东, 蒲占胥, 等. 柑橘黄龙病植株叶片中脉内生真菌多样性[J]. 浙江农业科学, 2019, 60(8): 1463 − 1465. [32] Heydari S, Siavoshi F, Sarrafnejad A, et al. Coniochaeta fungus benefits from its intracellular bacteria to form biofilm and defend against other fungi[J]. Archives of Clinical Microbiology, 2021, 203: 1357 − 1366. doi: 10.1007/s00203-020-02122-4 [33] 王艳云. 黄河三角洲盐碱地土壤真菌多样性[J]. 北方园艺, 2016, (18): 185 − 189. [34] 金 桃, 冯 强, 万景旺, 等. 五种根际促生菌在改善植物的农艺性状方面的应用[P]. 中国: CN106472568B: 2020-05-12. [35] Gutierrez T, Green D H, Nichols P D, et al. Polycyclovorans algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton[J]. Applied and Environmental Microbiology, 2013, 79(1): 205 − 214. doi: 10.1128/AEM.02833-12 [36] Liu Z X, Liu J J, Yu Z H, Yao Q, et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition[J]. Soil & Tillage Research, 2020, 197: 104503. [37] 张风革, 霍云倩, 孙 艺, 等. 连续施用生物有机肥对草地生物量及土壤微生物区系的影响[J]. 南京农业大学学报, 2018, 41(2): 382 − 388. doi: 10.7685/jnau.201708004 [38] 刘雯雯, 喻理飞, 严令斌, 等. 喀斯特石漠化区植被恢复不同阶段土壤真菌群落组成分析[J]. 生态环境学报, 2019, 28(4): 669 − 675. [39] 吴庆珊. 纤维素降解菌筛选及其在羊粪堆肥发酵中的应用[D]. 贵州师范大学, 2018. [40] Wang S L, Wang H, Hafeez M B, et al. No-tillage and subsoiling increased maize yields and soil water storage under varied rainfall distribution: A 9-year site-specific study in a semi-arid environment[J]. Field Crops Research, 2020: 255. [41] Yuan L, Zhou L, Song C, et al. Microbial-derived carbon components are critical for enhancing soil organic carbon in no-tillage croplands: A global perspective[J]. Soil & Tillage Research, 2021, 205: 104758. [42] 董 博, 曾 骏, 张东伟, 等. 小麦-玉米免耕轮作对土壤有机碳、无机碳与微生物量碳含量的影响[J]. 土壤通报, 2013, 44(2): 376 − 379. [43] 肖美佳, 张晴雯, 董月群, 等. 免耕对土壤微生物量碳影响的Meta分析[J]. 核农学报, 2019, 33(4): 833 − 839. doi: 10.11869/j.issn.100-8551.2019.04.0833 [44] 张文颖, 张恩和, 张凤云. 河西灌区麦茬免耕对春玉米田土壤微生物量氮和磷的影响[J]. 甘肃农业大学学报, 2006, (6): 108 − 113. doi: 10.3969/j.issn.1003-4315.2006.06.024 [45] Xu X R, An T T, Zhang J M, et al. Transformation and stabilization of straw residue carbon in soil affected by soil types, maize straw addition and fertilized levels of soil[J]. Geoderma, 2019, 337: 622 − 629. doi: 10.1016/j.geoderma.2018.08.018 [46] 黄 山, 刘武仁, 殷 明, 等. 东北地区玉米田长期免耕土壤碳氮及微生物活性的剖面分布特征[J]. 玉米科学, 2009, 17(3): 103 − 106. [47] 张贵云, 张丽萍, 魏明峰, 等. 长期保护性耕作对丛枝菌根真菌多样性的影响[J]. 中国生态农业学报, 2018, 26(7): 1048 − 1055. [48] Schmidt R, Mitchell J, Scow K. Cover cropping and no-till increase diversity and symbiotroph: saprotroph ratios of soil fungal communities[J]. Soil Biology and Biochemistry, 2019, 129: 99 − 109. doi: 10.1016/j.soilbio.2018.11.010 [49] 屈会娟, 李金才, 沈学善, 等. 秸秆全量还田对冬小麦不同小穗位和粒位结实粒数和粒重的影响[J]. 中国农业科学, 2011, 44(10): 2176 − 2183. [50] 李秀枝, 黄智鸿, 袁进成, 等. 植物生长调节剂对玉米籽粒灌浆特性及粒重的影响[J]. 河北北方学院学报(自然科学版), 2015, 31(2): 41 − 44. [51] 韩雅娇, 朱新萍, 杨宝和, 等. 土壤湿度和机械长度对棉花秸秆分解率的影响[J]. 农业资源与环境学报, 2014, 31(1): 69 − 73. [52] Parhizkar M, Shabanpour M, Lucas-Borja M E, et al. Effects of length and application rate of rice straw mulch on surface runoff and soil loss under laboratory simulated rainfall[J]. International Journal of Sediment Research, 2020, 36: 468 − 478. -