留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小浪底库区不同水位高程下消落带落干期土壤微生物量碳分布特征

张小磊 齐庆超 李春发 裴颖春 王业宁

张小磊, 齐庆超, 李春发, 裴颖春, 王业宁. 小浪底库区不同水位高程下消落带落干期土壤微生物量碳分布特征[J]. 土壤通报, 2022, 53(6): 1395 − 1403 doi: 10.19336/j.cnki.trtb.2021100501
引用本文: 张小磊, 齐庆超, 李春发, 裴颖春, 王业宁. 小浪底库区不同水位高程下消落带落干期土壤微生物量碳分布特征[J]. 土壤通报, 2022, 53(6): 1395 − 1403 doi: 10.19336/j.cnki.trtb.2021100501
ZHANG Xiao-lei, QI Qing-chao, LI Chun-fa, PEI Ying-chun, WANG Ye-ning. Distribution Characteristics of Soil Microbial Biomass Carbon in Hydro-fluctuation Belt at Different Altitudes during the Drying Period of the Xiaolangdi Reservoir[J]. Chinese Journal of Soil Science, 2022, 53(6): 1395 − 1403 doi: 10.19336/j.cnki.trtb.2021100501
Citation: ZHANG Xiao-lei, QI Qing-chao, LI Chun-fa, PEI Ying-chun, WANG Ye-ning. Distribution Characteristics of Soil Microbial Biomass Carbon in Hydro-fluctuation Belt at Different Altitudes during the Drying Period of the Xiaolangdi Reservoir[J]. Chinese Journal of Soil Science, 2022, 53(6): 1395 − 1403 doi: 10.19336/j.cnki.trtb.2021100501

小浪底库区不同水位高程下消落带落干期土壤微生物量碳分布特征

doi: 10.19336/j.cnki.trtb.2021100501
基金项目: 河南省科技发展计划项目(202102310599、222400410344)和河南省科学院人才队伍建设专项(200401003)资助
详细信息
    作者简介:

    张小磊(1981−),男,河南漯河人,博士,副研究员,主要从事资源利用与环境保护研究,E-mail: skyxlzhang@126.com

  • 中图分类号: X144

Distribution Characteristics of Soil Microbial Biomass Carbon in Hydro-fluctuation Belt at Different Altitudes during the Drying Period of the Xiaolangdi Reservoir

  • 摘要:   目的  探究小浪底库区不同水位高程下消落带落干期土壤微生物量碳(SMBC)分布特征,为库区土壤碳循环研究及消落带受损植被系统恢复与重建提供理论依据。  方法  采用定位试验的方法,监测并分析了小浪底库区对照高程(275 m)和3个淹水高程(265、255、245 m)下消落带落干期SMBC含量及土壤理化性质变化。  结果  小浪底库区消落带表层SMBC含量的变化区间为29.25 ~ 204.97 mg kg−1,平均值为112.81 mg kg−1;消落带SMBC含量在各高程间差异明显,与对照相比,中短期淹水高程下(265和255 m)SMBC含量显著升高(P < 0.05),而长期淹水高程下(245 m)SMBC含量则显著降低(P < 0.05);消落带落干期SMBC含量随时间总体呈下降的变化趋势,并且前期下降更为明显,后期则较为平缓;不同土层间消落带SMBC含量的变化规律较为相似,其差异性主要体现在SMBC含量大小的变化上,表现为上土层(0 ~ 10 cm) > 下土层(10 ~ 20 cm);Pearson相关分析得出消落带SMBC含量在水位高程、时间及土层尺度上均与土壤含水率、温度、有机质和全氮之间存在显著相关性(P < 0.05),但与土壤黏粒含量和全磷之间的相关性并不显著(P > 0.05);同一高程草本植被下消落带SMBC含量明显高于灌丛,且混生植被类型下SMBC含量较相应的单一植被类型明显升高,表现为草本混生 > 单一草本,或灌丛-草本混生 > 灌丛。  结论  小浪底库区消落带土壤微生物量碳含量在不同研究尺度上的分布特征显著,并对土壤理化性质及植被类型的变化响应明显,因此可根据土壤环境条件,考虑采取不同植被混植的修复方式,开展小浪底库区消落带受损植被系统的恢复与重建。
  • 图  1  研究区位置及样点分布示意图

    Figure  1.  Schematic map of the location and sample distribution in the research area

    图  2  小浪底水库水位分布图(2018年4 ~ 11月)

    Figure  2.  Water level distribution of Xiaolangdi Reservoir (April-November 2018)

    图  3  消落带SMBC含量

    不同大写字母代表不同土层间的数据达到5%显著差异水平,不同小写字母代表同一土层不同高程的数据达到5%显著差异水平,下同。

    Figure  3.  Different contents of SMBC in hydro-fluctuation belt of the Xiaolangdi Reservoir

    表  1  不同水位高程下各样地植被类型

    Table  1.   Vegetation types of sample plots at different altitudes

    样地序号
    Code of plot
    植被类型
    Vegetation type
    275 m265 m255 m245 m
    SP1 狗牙根 蒿草 狗牙根 狗牙根
    SP2 荆条 狗牙根 狗牙根、蒿草 狗牙根、蒿草
    SP3 狗牙根、蒿草 狗牙根、蒿草、苍耳 蒿草 稗草
    SP4 荆条、狗牙根 狗牙根、蒿草 狗牙根、蒿草、苍耳 狗牙根、稗草
      注:植被为多种植物的表示混生植被类型,且以顺序靠前者为优势种。
    下载: 导出CSV

    表  2  小浪底库区消落带土壤基本理化性质

    Table  2.   Soil physicochemical properties in hydro-fluctuation belt of the Xiaolangdi Reservoir

    土层
    Layer
    (cm)
    高程
    Altitude
    (m)
    pH土壤含水率
    Soil moisture content
    (%)
    土壤温度
    Soil temperature
    (℃)
    黏粒含量
    Clay content
    (%)
    土壤有机质
    SOC
    (g kg−1)
    全氮
    TN
    (g kg−1)
    全磷
    TP
    (g kg−1)
    0 ~ 10 275 7.28 ± 0.27 bc 16.26 ± 2.55 b 25.52 ± 2.24 a 7.67 ± 2.39 b 7.40 ± 1.46 b 0.79 ± 0.07 b 0.26 ± 0.03 a
    265 7.16 ± 0.15 c 16.85 ± 2.80 b 25.63 ± 3.62 a 8.16 ± 2.19 b 8.54 ± 1.45 ab 0.94 ± 0.18 a 0.32 ± 0.07 a
    255 7.35 ± 0.24 b 17.50 ± 3.25 ab 25.39 ± 3.22 ab 10.42 ± 4.05 a 9.45 ± 1.71 a 0.83 ± 0.09 ab 0.30 ± 0.03 a
    245 7.83 ± 0.23 a 17.90 ± 3.10 a 25.25 ± 4.29 b 9.41 ± 4.07 ab 5.56 ± 1.22 c 0.56 ± 0.10 c 0.19 ± 0.02 b
    10 ~ 20 275 7.04 ± 0.12 bc 17.32 ± 3.82 b 24.22 ± 2.79 a 6.88 ± 3.01 ab 4.71 ± 0.85 b 0.46 ± 0.09 b 0.20 ± 0.05 ab
    265 6.90 ± 0.26 c 17.60 ± 3.02 b 24.20 ± 4.31 a 6.02 ± 2.13 b 6.29 ± 1.16 a 0.76 ± 0.07 a 0.25 ± 0.06 a
    255 7.15 ± 0.19 b 18.15 ± 2.66 ab 24.42 ± 3.86 a 8.65 ± 3.23 a 6.13 ± 1.19 a 0.50 ± 0.12 b 0.20 ± 0.02 ab
    245 7.44 ± 0.16 a 19.08 ± 2.92 a 24.28 ± 3.64 a 7.62 ± 2.65 ab 3.99 ± 0.82 c 0.48 ± 0.05 b 0.12 ± 0.01 b
      注:各指标数据以均值 ± 标准差表示,下同;同土层同列不同字母表示差异达到5%显著水平。
    下载: 导出CSV

    表  3  不同研究区域表层土壤中SMBC含量

    Table  3.   SMBC contents in topsoil of different study areas

    研究区域
    Study area
    植被类型
    Vegetation type
    SMBC
    (mg kg−1)
    数据来源
    Data source
    小浪底库区消落带 灌丛和草本植物 112.81 ± 16.32 本研究
    三峡库区王家沟消落带 草本植物 78.07 柴雪思等[17]
    三峡库区汝溪河流域消落带 修复重建林地 212.52 杨文航等[19]
    渤海泥质海岸 防护林 110.51 刘平等[23]
    全球湿地平均值 湿地植被 111.4 Xu et al.[1]
    全球平均值 56.7 Xu et al.[1]
    下载: 导出CSV

    表  4  不同水位高程下小浪底库区消落带SMBC动态变化

    Table  4.   Changes of SMBC contents at different altitudes in hydro-fluctuation belt of the Xiaolangdi Reservoir

    土层(cm)
    Layer
    高程(m)
    Altitude
    SMBC含量动态变化(mg kg−1)
    SMBC content at different sampling time
    06-1506-3007-1507-3008-1508-30
    0 ~ 10 275 156.85 ± 30.37 a 152.46 ± 20.49 ab 151.27 ± 26.25 ab 141.55 ± 30.30 b 142.55 ± 32.51 b 127.19 ± 26.44 c
    265 213.21 ± 35.64 a 193.38 ± 43.68 b 190.26 ± 47.05 b 153.43 ± 40.69 d 167.48 ± 30.50 c 157.27 ± 46.45 d
    255 267.46 ± 43.49 a 243.55 ± 55.71 b 170.45 ± 41.09 d 190.61 ± 26.12 c 183.82 ± 40.76 cd 173.95 ± 44.79 d
    245 80.72 ± 15.14 a 58.29 ± 13.66 b 71.52 ± 13.30 ab 62.24 ± 10.45 b 45.89 ± 10.18 bc 39.45 ± 9.19 c
    10 ~ 20 275 86.06 ± 12.21 a 80.11 ± 15.02 a 77.81 ± 18.56 ab 61.13 ± 13.23 b 69.45 ± 10.89 ab 62.76 ± 10.55 b
    265 140.45 ± 31.09 a 132.65 ± 35.03 a 108.74 ± 16.75 b 88.13 ± 21.63 cd 97.27 ± 16.45 c 81.26 ± 11.25 d
    255 153.62 ± 33.72 a 111.13 ± 29.23 b 91.09 ± 16.22 c 80.39 ± 13.08 d 92.12 ± 17.42 c 90.25 ± 13.05 c
    245 40.08 ± 8.82 a 34.56 ± 7.91 ab 29.92 ± 7.08 b 32.65 ± 5.53 ab 20.87 ± 5.17 bc 17.45 ± 4.09 c
      注:同土层同行不同字母表示差异达到5%显著水平。
    下载: 导出CSV

    表  5  小浪底库区消落带不同土层SMBC最小值对应时间

    Table  5.   Corresponding time of SMBC minimum values in hydro-fluctuation belt of the Xiaolangdi Reservoir

    高程(m)
    Altitude
    SMBC最小值对应时间(mm-dd)
    Corresponding time of SMBC minimum
    下土层延后时间(d)
    Delay time
    0 ~ 10 cm10 ~ 20 cm
    275 08-30 07-30 −31
    265 07-30 08-30 31
    255 07-15 07-30 15
    245 08-30 08-30 0
    下载: 导出CSV

    表  6  植被类型对不同水位高程下消落带SMBC含量的影响

    Table  6.   Effects of vegetation type on SMBC contents at different altitudes in hydro-fluctuation belt of the Xiaolangdi Reservoir

    土层(cm)
    Layer
    高程(m)
    Altitude
    不同植被类型下SMBC含量(mg kg−1)
    SMBC content under different vegetation types
    SP1SP2SP3SP4
    0 ~ 10 275 147.23 ± 22.62 b 137.15 ± 18.69 c 154.52 ± 26.58 a 142.35 ± 28.26 bc
    265 173.78 ± 25.69 b 178.08 ± 28.97 ab 184.49 ± 31.25 a 180.33 ± 29.02 ab
    255 202.52 ± 34.26 b 210.49 ± 31.30 ab 187.62 ± 29.38 c 219.26 ± 34.38 a
    245 56.26 ± 8.92 b 62.35 ± 9.02 a 55.25 ± 8.55 b 64.88 ± 10.91 a
    10 ~ 20 275 73.68 ± 11.35 a 70.72 ± 11.18 a 74.87 ± 12.23 a 72.28 ± 9.91 a
    265 99.65 ± 18.47 b 106.16 ± 15.15 ab 114.46 ± 17.10 a 112.06 ± 22.00 a
    255 100.23 ± 14.95 ab 107.32 ± 18.15 a 95.48 ± 17.94 b 110.42 ± 15.11 a
    245 28.28 ± 3.92 a 29.48 ± 3.67 a 27.84 ± 3.75 a 31.42 ± 4.65 a
      注:同土层同行不同字母表示差异达到5%显著水平。
    下载: 导出CSV

    表  7  消落带SMBC与土壤理化性质的相关性

    Table  7.   Correlations between SMBC and soil physicochemical properties in hydro-fluctuation belt of the Xiaolangdi Reservoir

    指标
    Index
    不同土层SMBC
    SMBC of different layer
    不同高程SMBC
    SMBC of different altitude
    不同时间SMBC
    SMBC of different time
    0 ~ 10 cm10 ~ 20 cm275 m265 m255 m245 m06-1506-3007-1507-3008-1508-30
    pH −0.394* −0.413* −0.416* −0.336 −0.428* −0.342 −0.325 −0.409* −0.284 −0.239 −0.396* −0.378
    土壤含水率
    0.526** 0.493** 0.557** 0.605** 0.519** 0.560** 0.630** 0.584** 0.561** 0.643** 0.599** 0.578**
    土壤温度
    0.435* 0.407* 0.419* 0.448* 0.486* 0.483* 0.557** 0.538** 0.524** 0.556** 0.513** 0.522**
    黏粒含量
    0.255 0.156 0.258 0.242 0.134 0.181 0.224 0.307 0.253 0.162 0.227 0.171
    SOC 0.425* 0.381* 0.629** 0.595** 0.547** 0.526** 0.461* 0.437* 0.453* 0.480* 0.441* 0.438*
    TN 0.423* 0.406* 0.454* 0.458* 0.442* 0.426* 0.456* 0.452* 0.439* 0.465* 0.456* 0.425*
    TP 0.212 0.209 0.238 0.224 0.217 0.203 0.304 0.331 0.349 0.317 0.350 0.336
      注:**代表在1%水平上显著相关,*代表在5%水平上显著相关。
    下载: 导出CSV
  • [1] Xu X F, Thornton P E, Post W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Global Ecology and Biogeography, 2013, 22(6): 737 − 749. doi: 10.1111/geb.12029
    [2] Yang Y, Dou Y X, An S S. Environmental driving factors affecting plant biomass in natural grassland in the Loess Plateau, China[J]. Ecological Indicators, 2017, 82: 250 − 259. doi: 10.1016/j.ecolind.2017.07.010
    [3] 徐佳晶, 邵鹏帅, 张教林, 等. 西双版纳不同森林类型土壤微生物生物量的变化[J]. 土壤通报, 2017, 48(1): 100 − 106.
    [4] Zhou Z H, Wang C K. Reviews and syntheses: soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China’s forest ecosystems[J]. Biogeosciences, 2015, 12(14): 6751 − 6760.
    [5] Medlyn B E, Zaehle S, Kauwe M D, et al. Using ecosystem experiments to improve vegetation models[J]. Nature Climate Change, 2015, 5(6): 528 − 534. doi: 10.1038/nclimate2621
    [6] 周 瑶, 马红彬, 贾希洋, 等. 不同生态恢复措施下宁夏黄土丘陵典型草原土壤质量评价[J]. 农业工程学报, 2017, 33(18): 102 − 110. doi: 10.11975/j.issn.1002-6819.2017.18.014
    [7] Spohn M, Klaus K, Wanek W, et al. Microbial carbon use efficiency and biomass turnover times depending on soil depth–Implications for carbon cycling[J]. Soil Biology and Biochemistry, 2016, 96: 74 − 81. doi: 10.1016/j.soilbio.2016.01.016
    [8] Li Y, Chang S X, Tian L, et al. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis[J]. Soil Biology and Biochemistry, 2018, 121: 50 − 58. doi: 10.1016/j.soilbio.2018.02.024
    [9] Gao J T, Wang E X, Ren W L, et al. Effects of simulated climate change on soil microbial biomass and enzyme activities in young Chinese fir (Cunninghamia lanceolata) in subtropical China[J]. Acta Ecologica Sinica, 2017, 37(4): 272 − 278. doi: 10.1016/j.chnaes.2017.02.007
    [10] Kumar S, Chaudhuri S, Maiti S K. Soil microbial niomass carbon in natural and degraded soil: A review[J]. Environment and Ecology, 2011, 29(3B): 1689 − 1695.
    [11] Silva A P, Babujia L C, Franchini J C, et al. Soil structure and its influence on microbial biomass in different soil and crop management systems[J]. Soil and Tillage Research, 2014, 142: 42 − 53. doi: 10.1016/j.still.2014.04.006
    [12] Soleimani A, Hosseini S M, Massah Bavani A R, et al. Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran[J]. Catena, 2019, 177: 227 − 237. doi: 10.1016/j.catena.2019.02.018
    [13] 何冬梅, 江 浩, 祝亚云, 等. 江苏滨海湿地不同演替阶段土壤微生物生物量碳质量分数特征及其影响因素[J]. 浙江农林大学学报, 2020, 37(4): 623 − 630. doi: 10.11833/j.issn.2095-0756.20190565
    [14] Liu D, Huang Y M, Sun H Y, et al. The restoration age of Robinia pseudoacacia plantation impacts soil microbial biomass and microbial community structure in the Loess Plateau[J]. Catena, 2018, 165: 192 − 200. doi: 10.1016/j.catena.2018.02.001
    [15] 王 纯, 刘兴土, 仝 川, 等. 水盐梯度对闽江河口湿地土壤有机碳组分的影响[J]. 中国环境科学, 2017, 37(10): 3919 − 3928. doi: 10.3969/j.issn.1000-6923.2017.10.037
    [16] 仲 波, 孙 庚, 陈冬明, 等. 不同恢复措施对若尔盖沙化退化草地恢复过程中土壤微生物生物量碳氮及土壤酶的影响[J]. 生态环境学报, 2017, 26(3): 392 − 399.
    [17] 柴雪思, 雷利国, 江长胜, 等. 三峡库区典型消落带土壤微生物生物量碳、氮的变化特征及其影响因素探讨[J]. 环境科学, 2016, 37(8): 2979 − 2988.
    [18] 张海玲. 童庄河消落带不同水位梯度土壤微生物碳利用效率的生态化学计量[D]. 宜昌: 三峡大学, 2019.
    [19] 杨文航, 秦 红, 任庆水, 等. 三峡库区消落带重建植被下土壤微生物生物量碳氮含量特征[J]. 生态学报, 2017, 37(23): 7947 − 7955.
    [20] 陈翠霞, 安催花, 罗秋实, 等. 黄河水沙调控现状与效果[J]. 泥沙研究, 2019, 44(2): 69 − 74.
    [21] 丁长欢, 王莲阁, 唐 江, 等. 水热变化对三峡水库消落带紫色土有机碳矿化的影响[J]. 环境科学, 2016, 37(7): 2763 − 2769.
    [22] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [23] 刘 平, 邱 月, 王玉涛, 等. 渤海泥质海岸典型防护林土壤微生物量季节动态变化[J]. 生态学报, 2019, 39(1): 363 − 370.
    [24] 白军红, 邓 伟, 张玉霞, 等. 洪泛区天然湿地土壤有机质及氮素空间分布特征[J]. 环境科学, 2002, (2): 77 − 81. doi: 10.3321/j.issn:0250-3301.2002.02.016
    [25] 康 义, 郭泉水, 程瑞梅, 等. 三峡库区消落带土壤物理性质变化[J]. 林业科学, 2010, 46(6): 1 − 5. doi: 10.11707/j.1001-7488.20100601
    [26] 邹 锋, 武鑫鹏, 张万港, 等. 鄱阳湖典型湿地土壤微生物活性对季节性水位变化的响应[J]. 生态学报, 2018, 38(11): 3838 − 3847.
    [27] 张 静, 马 玲, 丁新华, 等. 扎龙湿地不同生境土壤微生物生物量碳氮的季节变化[J]. 生态学报, 2014, 34(13): 3712 − 3719.
    [28] 王 淇, 王 立, 马维伟, 等. 尕海湿地退化过程中土壤微生物生物量碳、氮的动态变化[J]. 甘肃农业大学学报, 2017, 52(4): 103 − 109.
    [29] 付战勇, 孙景宽, 李传荣, 等. 黄河三角洲贝壳堤土壤微生物生物量对不同生境因子的响应[J]. 生态学报, 2018, 38(18): 6594 − 6602.
    [30] 冯书珍, 苏以荣, 张 伟, 等. 坡位与土层对喀斯特原生林土壤微生物生物量与丰度的影响[J]. 环境科学, 2015, 36(10): 3832 − 3838.
    [31] 王薪琪, 韩 轶, 王传宽. 帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态[J]. 植物生态学报, 2017, 41(6): 597 − 609. doi: 10.17521/cjpe.2017.0011
    [32] Ruan H H, Zou X M, Scatena F N, et al. Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest[J]. Plant and Soil, 2004, 260(1-2): 147 − 154.
    [33] Bárcenas-Moreno G, Gómez-Brandón M, Rousk J, et al. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment[J]. Global Change Biology, 2009, 15(12): 2950 − 2957. doi: 10.1111/j.1365-2486.2009.01882.x
    [34] 孙馨宇, 张 枭, 张 鹏, 等. 温度、水分及有机物料对苹果园土壤有机碳转化和微生物群落多样性的影响[J]. 土壤通报, 2018, 49(4): 822 − 833.
    [35] 彭晓茜, 王 娓. 内蒙古温带草原土壤微生物生物量碳的空间分布及驱动因素[J]. 微生物学通报, 2016, 43(9): 1918 − 1930.
    [36] Acosta-Martínez V, Lascano R, Calderón F, et al. Dryland cropping systems influence the microbial biomass and enzyme activities in a semiarid sandy soil[J]. Biology and Fertility of Soils, 2011, 47(6): 655 − 667. doi: 10.1007/s00374-011-0565-1
    [37] 聂秀青, 王 冬, 周国英, 等. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996 − 1005. doi: 10.17521/cjpe.2021.0113
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  35
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-16
  • 录用日期:  2022-05-03
  • 修回日期:  2022-05-03
  • 刊出日期:  2022-12-06

目录

    /

    返回文章
    返回