留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤中重金属铬(Ⅵ)污染修复技术的研究进展

曹俊雅 张婧 张文茜 刘猛 石正杰

曹俊雅, 张 婧, 张文茜, 刘 猛, 石正杰. 土壤中重金属铬(Ⅵ)污染修复技术的研究进展[J]. 土壤通报, 2022, 53(5): 1220 − 1227 doi: 10.19336/j.cnki.trtb.2021101901
引用本文: 曹俊雅, 张 婧, 张文茜, 刘 猛, 石正杰. 土壤中重金属铬(Ⅵ)污染修复技术的研究进展[J]. 土壤通报, 2022, 53(5): 1220 − 1227 doi: 10.19336/j.cnki.trtb.2021101901
CAO Jun-ya, ZHANG Jing, ZHANG Wen-xi, LIU Meng, SHI Zheng-jie. Research Progress on Remediation Technique for Hexavalent Chromic-contaminated Soil[J]. Chinese Journal of Soil Science, 2022, 53(5): 1220 − 1227 doi: 10.19336/j.cnki.trtb.2021101901
Citation: CAO Jun-ya, ZHANG Jing, ZHANG Wen-xi, LIU Meng, SHI Zheng-jie. Research Progress on Remediation Technique for Hexavalent Chromic-contaminated Soil[J]. Chinese Journal of Soil Science, 2022, 53(5): 1220 − 1227 doi: 10.19336/j.cnki.trtb.2021101901

土壤中重金属铬(Ⅵ)污染修复技术的研究进展

doi: 10.19336/j.cnki.trtb.2021101901
基金项目: 国家自然科学基金资助项目(41977029)和中央高校基本科研业务费专项基金项目(2021YJSHH33)资助
详细信息
    作者简介:

    曹俊雅(1981−),女,河南人,副教授,硕士生导师,主要从事环境化工方面的研究,E-mail: caojy@cumtb.edu.cn

  • 中图分类号: X53

Research Progress on Remediation Technique for Hexavalent Chromic-contaminated Soil

  • 摘要: 我国土壤铬(Cr)污染的形势较为严峻,目前对重金属Cr(VI)的治理迫在眉睫。本文通过对铬污染的来源、修复机理、形态转化与毒性危害进行阐述,论述了目前多种常见的土壤重金属铬污染修复技术,通过分析各方法的运用实例与实验室试验结果,指出土壤铬污染的主要问题以及传统方法、新型方法和联合修复方法的发展与前景。相比而言,一些新型修复方法和联合修复可避免单一修复的不足之处,其修复效果较好、经济效益高、产生的不利影响较小。
  • 图  1  铬在土壤中的价态与形态

    Figure  1.  Valence and form of chromium in soil

    图  2  将Cr(VI)还原为Cr(III)的还原剂种类及机理

    Figure  2.  Type and mechanism of reducing agent for reducing Cr (VI) to Cr (III)

    图  3  生物炭对Cr的吸附机理[34]

    Figure  3.  Adsorption mechanism of Cr on biochar[34]

    图  4  修复土壤重金属铬的关键词网络可视化图

    Figure  4.  Network visualization diagram of heavy metal chromium in remediation soil

    表  1  土壤中铬在不同pH条件下的风险筛选值和管制值(mg kg−1

    Table  1.   Risk screening value and control value of chromium under different pH(mg kg−1

    标准值
    S
    pH ≤ 5.55.5 < pH ≤ 6.56.5 < pH ≤ 7.5pH > 7.5
    风险筛选值 水田 250 250 300 350
    其他 150 150 200 250
    风险管制值 800 850 1000 1300
    下载: 导出CSV
  • [1] Zhang X Y, Zhong T Y, Liu L, et al. Chromium occurrences in arable soil and its influence on food production in China[J]. Environmental Earth Sciences, 2016, 75(3): 1 − 8.
    [2] Al-battashi H, Joshi S J, Pracejus B, et al. The Geomicrobiology of Chromium (Ⅵ) Pollution: Microbial Diversity and its Bioremediation Potential[J]. The Open Biotechnology Journal, 2016, 10(1): 379 − 389. doi: 10.2174/1874070701610010379
    [3] Singh H P, Mahajan P, Kaur S, et al. Chromium toxicity and tolerance in plants[J]. Environmental Chemistry Letters, 2013, 11(3): 229 − 254. doi: 10.1007/s10311-013-0407-5
    [4] Tumolo M, Ancona V, Paola D D, et al. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview[J]. Int J Environ Res Public Health, 2020, 17(15): 1 − 24.
    [5] 付平南, 贡晓飞, 罗丽韵, 等. 不同价态铬和土壤理化性质对大麦根系毒性阈值的影响[J]. 环境科学, 2020, 41(5): 2398 − 2405.
    [6] Dubey S, Shri M, Gupta A, et al. Toxicity and detoxification of heavy metals during plant growth and metabolism[J]. Environmental Chemistry Letters, 2018, 16(4): 1169 − 1192. doi: 10.1007/s10311-018-0741-8
    [7] Pradas Del Real A E, Pérez-Sanz A, García-Gonzalo P, et al. Evaluating Cr behaviour in two different polluted soils: Mechanisms and implications for soil functionality[J]. J Environ Manage, 2020, 276: 111073. doi: 10.1016/j.jenvman.2020.111073
    [8] Darko H. A, Tatjana D. A, Ružica S. N, et al. Leaching of chromium from chromium contaminated soil: Speciation study and geochemical modeling[J]. Journal of the Serbian Chemical Society, 2012, 77(1): 119 − 129. doi: 10.2298/JSC101216154A
    [9] 姜身永, 侯 明. 土壤几种化学性质对土壤Cr形态的影响[J]. 桂林工学院学报, 2008, 28(4): 558 − 561.
    [10] X. Han F, Su Y, Maruthi Sridhar B. B., et al Distribution, transformation and bioavailability of trivalent and hexavalent chromium in contaminated soil[J]. Plant and Soil, 2004, 265: 243 − 252. doi: 10.1007/s11104-005-0975-7
    [11] Dhaliwal S S, Singh J, Taneja P K, et al. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review[J]. Environ Sci Pollut Res Int, 2020, 27(2): 1319 − 1333. doi: 10.1007/s11356-019-06967-1
    [12] Nitika S, Kaur S K, Mohit K, et al. Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation[J]. Environmental Nanotechnology, Monitoring & Management, 2021, 15: 1 − 12.
    [13] López Vizcaíno R, Yustres A, Asensio L, et al. Enhanced electrokinetic remediation of polluted soils by anolyte pH conditioning[J]. Chemosphere, 2018, 1994: 77 − 85.
    [14] Sawada A, Mori K-I, Tanaka S, et al. Removal of Cr(VI) from contaminated soil by electrokinetic remediation[J]. Waste Management, 2004, 24(5): 483 − 490. doi: 10.1016/S0956-053X(03)00133-8
    [15] Xu Y F, Xu X J, Hou H T, et al. Moisture content-affected electrokinetic remediation of Cr(Ⅵ)-contaminated clay by a hydrocalumite barrier[J]. Environ Sci Pollut Res Int, 2016, 23(7): 6517 − 6523. doi: 10.1007/s11356-015-5685-y
    [16] Suzuki T, Kawai K, Moribe M, et al. Recovery of Cr as Cr(Ⅲ) from Cr(Ⅵ)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier[J]. J Hazard Mater, 2014, 278: 297 − 303. doi: 10.1016/j.jhazmat.2014.05.086
    [17] Yang Z H, Zhang X M, Jiang Z, et al. Reductive materials for remediation of hexavalent chromium contaminated soil-A review[J]. Sci Total Environ, 2021, 773: 145 − 654.
    [18] 何雨江, 陈德文, 张 成, 等. 土壤重金属铬污染修复技术的研究进展[J]. 安全与环境工程, 2020, 27(3): 126 − 132.
    [19] Ma Y M, Li F F, Jiang Y L, et al. Remediation of Cr(Ⅵ)-Contaminated Soil Using the Acidified Hydrazine Hydrate[J]. Bull Environ Contam Toxicol, 2016, 97(3): 392 − 4. doi: 10.1007/s00128-016-1862-z
    [20] Zhang T T, Xue Q, Li J S, et al. Effect of ferrous sulfate dosage and soil particle size on leachability and species distribution of chromium in hexavalent chromium‐contaminated soil stabilized by ferrous sulfate[J]. Environmental Progress & Sustainable Energy, 2018, 38(2): 500 − 507.
    [21] 张恩智, 蹇 川, 张 笑, 等. 抗坏血酸和铁系还原剂修复铬污染土壤[J]. 化工环保, 2020, 40(6): 619 − 624. doi: 10.3969/j.issn.1006-1878.2020.06.010
    [22] Yuan W, Xu W, Wu Z, et al. Mechanochemical treatment of Cr(VI) contaminated soil using a sodium sulfide coupled solidification/stabilization process[J]. Chemosphere, 2018, 212: 540 − 547.
    [23] 孙 鑫, 娄燕宏, 王 会, 等. 重金属污染土壤的植物强化修复研究进展[J]. 土壤通报, 2017, 48(4): 1008 − 1013.
    [24] Dipali S, Madhu T, Prasanna D, et al. Chromium Stress in Plants: Toxicity, Tolerance and Phytoremediation[J]. Sustainability, 2021, 13(9): 4629. doi: 10.3390/su13094629
    [25] A. S, R. J, R. V H, et al. Phytoremediation of Cr(VI) ion contaminated soil using Black gram (Vigna mungo): Assessment of removal capacity[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103052. doi: 10.1016/j.jece.2019.103052
    [26] Dökmeci A H, Adiloğlu S. The Phytoremediation of Chromium from Soil Using Cirsium Vulgare and the Health Effects[J]. Biosciences Biotechnology Research Asia, 2020, 17(3): 535 − 541. doi: 10.13005/bbra/2857
    [27] Viti C, Marchi E, Decorosi F, et al. Molecular mechanisms of Cr(VI) resistance in bacteria and fungi[J]. FEMS Microbiology Reviews, 2014, 38(4): 633 − 659. doi: 10.1111/1574-6976.12051
    [28] Thatoi H, Das S, Mishra J, et al. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review[J]. J Environ Manage, 2014, 146: 383 − 399. doi: 10.1016/j.jenvman.2014.07.014
    [29] Jobby R, Jha P, Yadav A K, et al. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review[J]. Chemosphere, 2018, 207: 255 − 266. doi: 10.1016/j.chemosphere.2018.05.050
    [30] Su C Q, Li L Q, Yang Z H, et al. Cr(VI) reduction in chromium-contaminated soil by indigenous microorganisms under aerobic condition[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1304 − 1311. doi: 10.1016/S1003-6326(19)65037-5
    [31] Han Y Y, Dong C X, CAO Y, et al. BIOREMEDIATION OF Cr(VI)-CONTAMINATED SOIL BY SULFATE-REDUCING BACTERIA (SRB) ENRICHMENT[J]. Fresenius Environmental Bulletin, 2018, 27(2): 651 − 657.
    [32] Mahmoud M S, Mohamed S A. Calcium alginate as an eco-friendly supporting material for Baker’s yeast strain in chromium bioremediation[J]. HBRC Journal, 2019, 13(3): 245 − 254.
    [33] Wang Y Y, Liu Y D, Zhan W H, et al. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations[J]. Sci Total Environ, 2020, 729: 1 − 10.
    [34] Xu W J, Hou S Z, Li Y Q, et al. Bioavailability and Speciation of Heavy Metals in Polluted Soil as Alleviated by Different Types of Biochars[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(4): 484 − 488. doi: 10.1007/s00128-020-02804-1
    [35] Cheng S, Chen T, Xu W Z, et al. Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review[J]. Molecules, 2020, 25(14): 1 − 21.
    [36] Lee C C, Huang J H, Lin L Y, et al. Enhanced Immobilization of Cr(VI) in Soils by the Amendment of Rice Straw Char[J]. Soil and Sediment Contamination:An International Journal, 2016, 25(5): 505 − 518. doi: 10.1080/15320383.2016.1169500
    [37] Dianat M Z, Fekri M, Mahmoodabadi M, et al. Chromium desorption kinetics influenced by the rice husk and almond soft husk modified biochar in a calcareous soil[J]. Arabian Journal of Geosciences, 2021, 14(1): 1 − 18. doi: 10.1007/s12517-020-06304-8
    [38] Cai C, Zhao M, Yu Z, et al. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review[J]. Sci Total Environ, 2019, 662: 205 − 217. doi: 10.1016/j.scitotenv.2019.01.180
    [39] Zhou L L, Zhang G L, Wang M, et al. Efficient removal of hexavalent chromium from water and soil using magnetic ceramsite coated by functionalized nano carbon spheres[J]. Chemical Engineering Journal, 2018, 334: 400 − 409. doi: 10.1016/j.cej.2017.10.065
    [40] Liu S C, Gao H J, Cheng R, et al. Study on influencing factors and mechanism of removal of Cr(VI) from soil suspended liquid by bentonite-supported nanoscale zero-valent iron[J]. Sci Rep, 2020, 10(1): 1 − 12. doi: 10.1038/s41598-019-56847-4
    [41] Kumar R, Ansari M O, Alshahrie A, et al. Adsorption modeling and mechanistic insight of hazardous chromium on para toluene sulfonic acid immobilized-polyaniline@CNTs nanocomposites[J]. Journal of Saudi Chemical Society, 2019, 23(2): 188 − 197. doi: 10.1016/j.jscs.2018.06.005
    [42] Hou S Y, Wu B, Luo Y, et al. Impacts of a novel strain QY-1 allied with chromium immobilizing materials on chromium availability and soil biochemical properties[J]. J Hazard Mater, 2020, 382: 121093. doi: 10.1016/j.jhazmat.2019.121093
    [43] Wang D H, Li G H, Qin S Q, et al. Remediation of Cr(VI)-contaminated soil using combined chemical leaching and reduction techniques based on hexavalent chromium speciation[J]. Ecotoxicol Environ Saf, 2021, 208: 1 − 8.
    [44] Zheng Y, Yan Y J, Yu L, et al. Synergism of citric acid and zero-valent iron on Cr(VI) removal from real contaminated soil by electrokinetic remediation[J]. Environ Sci Pollut Res Int, 2020, 27(5): 5572 − 5583. doi: 10.1007/s11356-019-06820-5
    [45] 曹晓雅, 曹俊雅, 李媛媛, 等. 表面活性剂和硫酸盐还原菌去除污染土壤中的Cr6 + [J]. 过程工程学报, 2014, 14(1): 84 − 89.
    [46] 高 凯. 文献计量分析软件VOSviewer的应用研究[J]. 科技情报开发与经济, 2015, 25(12): 95 − 98.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  5
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 修回日期:  2022-04-15
  • 网络出版日期:  2022-10-12
  • 刊出日期:  2022-10-06

目录

    /

    返回文章
    返回