Research Progress on Remediation Technique for Hexavalent Chromic-contaminated Soil
-
摘要: 我国土壤铬(Cr)污染的形势较为严峻,目前对重金属Cr(VI)的治理迫在眉睫。本文通过对铬污染的来源、修复机理、形态转化与毒性危害进行阐述,论述了目前多种常见的土壤重金属铬污染修复技术,通过分析各方法的运用实例与实验室试验结果,指出土壤铬污染的主要问题以及传统方法、新型方法和联合修复方法的发展与前景。相比而言,一些新型修复方法和联合修复可避免单一修复的不足之处,其修复效果较好、经济效益高、产生的不利影响较小。Abstract: The situation of chromium(Cr)-contaminated soil in China is more severe. At present, it is urgent to remediate the Cr(VI)-contaminated in soil. This paper reviewed the source, remediated mechanisms, morphological transformation and toxic of Cr pollution. Based on this, many common remediated techniques of Cr-polluted soil are discussed. By analyzing the application examples and laboratory tests of various methods, the development and prospect of traditional methods, new methods and combined remediated methods and the main problem of Cr polluted soil are pointed out. In contrast, some new remediated methods and combined remediation could avoid the shortcomings of single remediation, with better remediated effect, high economic benefit and less adverse impact.
-
表 1 土壤中铬在不同pH条件下的风险筛选值和管制值(mg kg−1)
Table 1. Risk screening value and control value of chromium under different pH(mg kg−1)
标准值
SpH ≤ 5.5 5.5 < pH ≤ 6.5 6.5 < pH ≤ 7.5 pH > 7.5 风险筛选值 水田 250 250 300 350 其他 150 150 200 250 风险管制值 800 850 1000 1300 -
[1] Zhang X Y, Zhong T Y, Liu L, et al. Chromium occurrences in arable soil and its influence on food production in China[J]. Environmental Earth Sciences, 2016, 75(3): 1 − 8. [2] Al-battashi H, Joshi S J, Pracejus B, et al. The Geomicrobiology of Chromium (Ⅵ) Pollution: Microbial Diversity and its Bioremediation Potential[J]. The Open Biotechnology Journal, 2016, 10(1): 379 − 389. doi: 10.2174/1874070701610010379 [3] Singh H P, Mahajan P, Kaur S, et al. Chromium toxicity and tolerance in plants[J]. Environmental Chemistry Letters, 2013, 11(3): 229 − 254. doi: 10.1007/s10311-013-0407-5 [4] Tumolo M, Ancona V, Paola D D, et al. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview[J]. Int J Environ Res Public Health, 2020, 17(15): 1 − 24. [5] 付平南, 贡晓飞, 罗丽韵, 等. 不同价态铬和土壤理化性质对大麦根系毒性阈值的影响[J]. 环境科学, 2020, 41(5): 2398 − 2405. [6] Dubey S, Shri M, Gupta A, et al. Toxicity and detoxification of heavy metals during plant growth and metabolism[J]. Environmental Chemistry Letters, 2018, 16(4): 1169 − 1192. doi: 10.1007/s10311-018-0741-8 [7] Pradas Del Real A E, Pérez-Sanz A, García-Gonzalo P, et al. Evaluating Cr behaviour in two different polluted soils: Mechanisms and implications for soil functionality[J]. J Environ Manage, 2020, 276: 111073. doi: 10.1016/j.jenvman.2020.111073 [8] Darko H. A, Tatjana D. A, Ružica S. N, et al. Leaching of chromium from chromium contaminated soil: Speciation study and geochemical modeling[J]. Journal of the Serbian Chemical Society, 2012, 77(1): 119 − 129. doi: 10.2298/JSC101216154A [9] 姜身永, 侯 明. 土壤几种化学性质对土壤Cr形态的影响[J]. 桂林工学院学报, 2008, 28(4): 558 − 561. [10] X. Han F, Su Y, Maruthi Sridhar B. B., et al Distribution, transformation and bioavailability of trivalent and hexavalent chromium in contaminated soil[J]. Plant and Soil, 2004, 265: 243 − 252. doi: 10.1007/s11104-005-0975-7 [11] Dhaliwal S S, Singh J, Taneja P K, et al. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review[J]. Environ Sci Pollut Res Int, 2020, 27(2): 1319 − 1333. doi: 10.1007/s11356-019-06967-1 [12] Nitika S, Kaur S K, Mohit K, et al. Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation[J]. Environmental Nanotechnology, Monitoring & Management, 2021, 15: 1 − 12. [13] López Vizcaíno R, Yustres A, Asensio L, et al. Enhanced electrokinetic remediation of polluted soils by anolyte pH conditioning[J]. Chemosphere, 2018, 1994: 77 − 85. [14] Sawada A, Mori K-I, Tanaka S, et al. Removal of Cr(VI) from contaminated soil by electrokinetic remediation[J]. Waste Management, 2004, 24(5): 483 − 490. doi: 10.1016/S0956-053X(03)00133-8 [15] Xu Y F, Xu X J, Hou H T, et al. Moisture content-affected electrokinetic remediation of Cr(Ⅵ)-contaminated clay by a hydrocalumite barrier[J]. Environ Sci Pollut Res Int, 2016, 23(7): 6517 − 6523. doi: 10.1007/s11356-015-5685-y [16] Suzuki T, Kawai K, Moribe M, et al. Recovery of Cr as Cr(Ⅲ) from Cr(Ⅵ)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier[J]. J Hazard Mater, 2014, 278: 297 − 303. doi: 10.1016/j.jhazmat.2014.05.086 [17] Yang Z H, Zhang X M, Jiang Z, et al. Reductive materials for remediation of hexavalent chromium contaminated soil-A review[J]. Sci Total Environ, 2021, 773: 145 − 654. [18] 何雨江, 陈德文, 张 成, 等. 土壤重金属铬污染修复技术的研究进展[J]. 安全与环境工程, 2020, 27(3): 126 − 132. [19] Ma Y M, Li F F, Jiang Y L, et al. Remediation of Cr(Ⅵ)-Contaminated Soil Using the Acidified Hydrazine Hydrate[J]. Bull Environ Contam Toxicol, 2016, 97(3): 392 − 4. doi: 10.1007/s00128-016-1862-z [20] Zhang T T, Xue Q, Li J S, et al. Effect of ferrous sulfate dosage and soil particle size on leachability and species distribution of chromium in hexavalent chromium‐contaminated soil stabilized by ferrous sulfate[J]. Environmental Progress & Sustainable Energy, 2018, 38(2): 500 − 507. [21] 张恩智, 蹇 川, 张 笑, 等. 抗坏血酸和铁系还原剂修复铬污染土壤[J]. 化工环保, 2020, 40(6): 619 − 624. doi: 10.3969/j.issn.1006-1878.2020.06.010 [22] Yuan W, Xu W, Wu Z, et al. Mechanochemical treatment of Cr(VI) contaminated soil using a sodium sulfide coupled solidification/stabilization process[J]. Chemosphere, 2018, 212: 540 − 547. [23] 孙 鑫, 娄燕宏, 王 会, 等. 重金属污染土壤的植物强化修复研究进展[J]. 土壤通报, 2017, 48(4): 1008 − 1013. [24] Dipali S, Madhu T, Prasanna D, et al. Chromium Stress in Plants: Toxicity, Tolerance and Phytoremediation[J]. Sustainability, 2021, 13(9): 4629. doi: 10.3390/su13094629 [25] A. S, R. J, R. V H, et al. Phytoremediation of Cr(VI) ion contaminated soil using Black gram (Vigna mungo): Assessment of removal capacity[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103052. doi: 10.1016/j.jece.2019.103052 [26] Dökmeci A H, Adiloğlu S. The Phytoremediation of Chromium from Soil Using Cirsium Vulgare and the Health Effects[J]. Biosciences Biotechnology Research Asia, 2020, 17(3): 535 − 541. doi: 10.13005/bbra/2857 [27] Viti C, Marchi E, Decorosi F, et al. Molecular mechanisms of Cr(VI) resistance in bacteria and fungi[J]. FEMS Microbiology Reviews, 2014, 38(4): 633 − 659. doi: 10.1111/1574-6976.12051 [28] Thatoi H, Das S, Mishra J, et al. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review[J]. J Environ Manage, 2014, 146: 383 − 399. doi: 10.1016/j.jenvman.2014.07.014 [29] Jobby R, Jha P, Yadav A K, et al. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review[J]. Chemosphere, 2018, 207: 255 − 266. doi: 10.1016/j.chemosphere.2018.05.050 [30] Su C Q, Li L Q, Yang Z H, et al. Cr(VI) reduction in chromium-contaminated soil by indigenous microorganisms under aerobic condition[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1304 − 1311. doi: 10.1016/S1003-6326(19)65037-5 [31] Han Y Y, Dong C X, CAO Y, et al. BIOREMEDIATION OF Cr(VI)-CONTAMINATED SOIL BY SULFATE-REDUCING BACTERIA (SRB) ENRICHMENT[J]. Fresenius Environmental Bulletin, 2018, 27(2): 651 − 657. [32] Mahmoud M S, Mohamed S A. Calcium alginate as an eco-friendly supporting material for Baker’s yeast strain in chromium bioremediation[J]. HBRC Journal, 2019, 13(3): 245 − 254. [33] Wang Y Y, Liu Y D, Zhan W H, et al. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations[J]. Sci Total Environ, 2020, 729: 1 − 10. [34] Xu W J, Hou S Z, Li Y Q, et al. Bioavailability and Speciation of Heavy Metals in Polluted Soil as Alleviated by Different Types of Biochars[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(4): 484 − 488. doi: 10.1007/s00128-020-02804-1 [35] Cheng S, Chen T, Xu W Z, et al. Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review[J]. Molecules, 2020, 25(14): 1 − 21. [36] Lee C C, Huang J H, Lin L Y, et al. Enhanced Immobilization of Cr(VI) in Soils by the Amendment of Rice Straw Char[J]. Soil and Sediment Contamination:An International Journal, 2016, 25(5): 505 − 518. doi: 10.1080/15320383.2016.1169500 [37] Dianat M Z, Fekri M, Mahmoodabadi M, et al. Chromium desorption kinetics influenced by the rice husk and almond soft husk modified biochar in a calcareous soil[J]. Arabian Journal of Geosciences, 2021, 14(1): 1 − 18. doi: 10.1007/s12517-020-06304-8 [38] Cai C, Zhao M, Yu Z, et al. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review[J]. Sci Total Environ, 2019, 662: 205 − 217. doi: 10.1016/j.scitotenv.2019.01.180 [39] Zhou L L, Zhang G L, Wang M, et al. Efficient removal of hexavalent chromium from water and soil using magnetic ceramsite coated by functionalized nano carbon spheres[J]. Chemical Engineering Journal, 2018, 334: 400 − 409. doi: 10.1016/j.cej.2017.10.065 [40] Liu S C, Gao H J, Cheng R, et al. Study on influencing factors and mechanism of removal of Cr(VI) from soil suspended liquid by bentonite-supported nanoscale zero-valent iron[J]. Sci Rep, 2020, 10(1): 1 − 12. doi: 10.1038/s41598-019-56847-4 [41] Kumar R, Ansari M O, Alshahrie A, et al. Adsorption modeling and mechanistic insight of hazardous chromium on para toluene sulfonic acid immobilized-polyaniline@CNTs nanocomposites[J]. Journal of Saudi Chemical Society, 2019, 23(2): 188 − 197. doi: 10.1016/j.jscs.2018.06.005 [42] Hou S Y, Wu B, Luo Y, et al. Impacts of a novel strain QY-1 allied with chromium immobilizing materials on chromium availability and soil biochemical properties[J]. J Hazard Mater, 2020, 382: 121093. doi: 10.1016/j.jhazmat.2019.121093 [43] Wang D H, Li G H, Qin S Q, et al. Remediation of Cr(VI)-contaminated soil using combined chemical leaching and reduction techniques based on hexavalent chromium speciation[J]. Ecotoxicol Environ Saf, 2021, 208: 1 − 8. [44] Zheng Y, Yan Y J, Yu L, et al. Synergism of citric acid and zero-valent iron on Cr(VI) removal from real contaminated soil by electrokinetic remediation[J]. Environ Sci Pollut Res Int, 2020, 27(5): 5572 − 5583. doi: 10.1007/s11356-019-06820-5 [45] 曹晓雅, 曹俊雅, 李媛媛, 等. 表面活性剂和硫酸盐还原菌去除污染土壤中的Cr6 + [J]. 过程工程学报, 2014, 14(1): 84 − 89. [46] 高 凯. 文献计量分析软件VOSviewer的应用研究[J]. 科技情报开发与经济, 2015, 25(12): 95 − 98. -