Risk Assessment and Source Analysis of Heavy Metal Pollution in Green Space Soil in Huangshi city
-
摘要:
目的 城市绿地土壤健康问题日益受到人们的广泛关注。掌握黄石市绿地土壤重金属污染情况,为当地及同类矿冶城市生态建设与转型发展提供技术支撑。 方法 按照多点混合法选择黄石市道路绿地布设采样点,共采集土壤样品48个,测定其多种金属元素含量。使用地累积指数法、潜在生态危害指数法以及多元统计分析法对其进行污染评价;使用ArcGis10.2进行重金属分布可视化分析;利用相关性分析与主成分分析法对各重金属元素进行来源解析。 结果 土壤铅(Pb)、锌(Zn)、铬(Cr)、砷(As)、镉(Cd)、铜(Cu)的平均含量分别为200.12、424.88、109.96、56.74、4.02、376.81 mg kg−1,分别超出湖北省土壤背景值7.49、5.08、1.28、4.61、23.67、12.27倍,除Cr均未超出背景值外,各金属超出背景值样点占总体的比率分别为Cu 100%、Pb 97.92%、Zn 97.92%、As 93.75%、Cd 100%;地累积指数评价结果为53.06% ~ 87.08%样点处于中重度污染水平,89.58%样点的综合潜在生态危害指数大于150。 结论 土壤Cr含量空间分布较为均匀,但仍存在高值区,高值区位于西塞山区某大型冶钢企业附近。土壤Pb、Zn、As、Cu、Cd含量差异大,高值区均位于黄石港区,极高值点均位于下陆区某大型有色金属冶炼厂附近;6种重金属的地累积指数大小、即污染程度依次为:Cd > Pb > Cu > Zn > As > Cr,潜在生态危害指数为:Cd > Cu > As > Pb > Zn > Cr,可见Cd是该研究区域内最主要的重金属污染元素;多元统计分析表明Pb、Zn、As、Cd、Cu来源于人为源,与有色金属冶炼、交通有关,Cr主要来源于岩石的风化和土壤母质等。 Abstract:Objective The problem of soil health in urban green space has been widely concerned by people. The purpose of this study is to grasp the heavy metal pollution of green space soil in Huangshi City, Hubei Province, and to provide technical support for the ecological construction and transformation development of such mining and metallurgical cities. Method According to the multi-point mixing method, sampling points were selected for road green space layout in Huangshi City. A total of 48 soil samples were collected to determine the contents of various metal elements. The geo-accumulation index method, the potential ecological hazard index method and multivariate statistical analysis were used to evaluate the pollution. ArcGis10.2 was used to visualize the distribution of heavy metals, and the correlation analysis and principal component analysis were used to analyze the source of each heavy metal element. Result The results showed that the average contents of Pb, Zn, Cr, As, Cd and Cu were 200.12, 424.88, 109.96, 56.74, 4.02 and 376.81 mg kg−1. They exceed the background value in Hubei Province by 7.49, 5.08, 1.28, 4.61, 23.67 and 12.27 times, respectively. Except for Cr, the percentages of points exceeding the background value to the total were: Cu 100%, Pb 97.92%, Zn 97.92%, As 93.75% and Cd 100%. The evaluation of the geo-accumulative index showed that 53.06%-87.08% samples are at a moderate to severe pollution level, and the comprehensive potential ecological hazard index of 89.58% samples was greater than 150. Conclusion The distribution of Cr is relatively uniform, but there are still high value areas, which are located near a large steel smelting enterprise in Xisai Mountains. The distributions of Pb, Zn, As, Cu and Cd contents are quite different. High-value areas are all located in Huangshi Port area, and extremely high-value points are located near a large non-ferrous metal smelting plant in Xialu District. The geo-accumulation index indicates that the pollution degree of the six heavy metals is: Cd > Pb > Cu > Zn > As > Cr; the potential ecological hazard index is: Cd > Cu > As > Pb > Zn > Cr. Cd is the most important pollution element in the area. Multivariate statistical analysis shows that Pb, Zn, As, Cd, and Cu are anthropogenic sources and are related to non-ferrous metal smelting and transportation. Cr mainly comes from weathering of rocks and soil parent materials. -
Key words:
- Main road green space /
- Heavy metal /
- Spatial distribution /
- Ecological risk /
- Principal component
-
表 1 地质累积指数污染程度划分标准
Table 1. Classification standard for geological accumulation index and pollution degree
地质累积指数(Igeo)
Geo-accumulation index级别
level污染程度
Pollution degreeIgeo < 0 0 无污染 0 ≤ Igeo < 1 1 轻污染 1 ≤ Igeo < 2 2 中污染 2 ≤ Igeo < 3 3 中-重污染 3 ≤ Igeo < 4 4 重污染 4 ≤ Igeo < 5 5 重-极重污染 5 ≤ Igeo 6 极重污染 表 2 潜在生态危害指数等级划分
Table 2. Classification of potential ecological hazard index
潜在生态危害指数(Eri)
Potential ecological
hazard index污染潜在危害程度
Pollution potential
hazard degree综合潜在生态危害指数(RI)
Comprehensive potential ecological
hazard index综合污染潜在危害程度
Comprehensive pollution
potential hazardEr < 40 轻微生态危害 RI < 150 轻微生态危害 40 ≤ Er < 80 中等生态危害 150 ≤ RI < 300 中等生态危害 80 ≤ Er < 160 强生态危害 300 ≤ RI < 600 强生态危害 160 ≤ Er < 320 很强生态危害 600 ≤ RI < 1200 很强生态危害 Er ≥ 320 极强生态危害 RI > 1200 极强生态危害 表 3 研究区土壤样品重金属元素含量
Table 3. Heavy metal concentrations of soil samples in study area
重金属
Heavy metal最小值
Minimum
(mg kg−1)最大值
Max
(mg kg−1)平均值
average
(mg kg−1)变异系数
Coefficient of
Variation湖北背景值
Hubei background
(mg kg−1)中国背景值
Chinese background
(mg kg−1)筛选值
Filter value
(mg kg−1)Pb 24.27 1803.73 200.12 1.33 26.70 26.00 400.00 Zn 77.32 2740.94 424.88 1.01 83.60 74.20 − Cr 45.18 240.01 109.96 0.37 86.00 61.00 − As 9.84 545.33 56.74 1.41 12.30 11.20 20.00 Cd 0.21 92.80 4.02 3.33 0.17 0.17 20.00 Cu 34.48 7018.69 376.81 2.73 30.70 22.60 2000.00 Fe 24086.14 78182.75 48385.44 0.22 39100.00 2.94 − 表 4 土壤各种重金属的地累积指数
Table 4. Geo-accumulation index of various heavy metals in soil
重金属
Heavy metalIgeo平均值
Igeo averageIgeo < 0 0 ≤ Igeo < 1 1 ≤ Igeo < 2 2 ≤ Igeo < 3 3 ≤ Igeo < 4 4 ≤ Igeo < 5 Igeo ≥ 5 Pb 1.77 2.08% 25.00% 31.25% 31.25% 8.33% 0.00% 2.08% Zn 1.36 6.25% 31.25% 37.50% 16.67% 6.25% 2.08% 0.00% Cr −0.32 83.33% 16.67% 0.00% 0.00% 0.00% 0.00% 0.00% As 1.11 12.50% 33.33% 41.67% 6.25% 4.17% 2.08% 0.00% Cd 2.51 2.08 % 8.33% 29.17% 33.33% 14.58% 6.25% 6.25% Cu 1.68 10.42 % 29.17% 22.92% 10.42% 10.42% 6.25% 4.17% 表 5 土壤各重金属潜在生态危害指数(Eri)及各采样点综合潜在生态危害指数(RI)
Table 5. Potential ecological hazard index of heavy metals in soil and comprehensive potential ecological hazard index of each sampling point
潜在生态危害指数(Eri)
Potential ecological hazard index综合潜在生态危害指数(RI)
Comprehensive potential ecological hazard index重金属
Heavy metalEri 采样点
Sampling NORI 采样点
Sampling NORI 采样点
Sampling NORI 采样点
Sampling NORI Pb 37.47 1 181.18 13 220.85 25 362.91 37 343.21 Zn 5.08 2 221.11 14 1417.28 26 265.42 38 487.98 Cr 2.56 3 234.61 15 257.45 27 265.05 39 658.80 As 46.13 4 456.50 16 171.44 28 495.34 40 238.26 Cd 710.05 5 2899.58 17 283.61 29 66.92 41 159.25 Cu 61.37 6 256.47 18 172.77 30 18337.96 42 245.56 7 141.81 19 860.70 31 2885.85 43 378.78 8 284.61 20 296.29 32 1038.87 44 229.24 9 436.50 21 172.48 33 414.42 45 164.01 10 706.35 22 543.76 34 420.51 46 378.97 11 1247.28 23 122.23 35 546.12 47 216.31 12 729.35 24 288.97 36 67.46 48 137.67 表 6 土壤重金属浓度的相关分析
Table 6. Pearson analysis of soil heavy metal concentration
重金属
Heavy metalPb Zn Cr As Cd Cu Ba Be Fe Mn Ti V Co Ni Pb 1 Zn 0.902** 1 Cr 0.374** 0.468** 1 As 0.923** 0.908** 0.366* 1 Cd 0.919** 0.866** 0.354* 0.951** 1 Cu 0.905** 0.860** 0.392** 0.940** 0.987** 1 Ba 0.159 0.126 0.392** 0.05 0.046 0.067 1 Be −0.166 −0.143 −.414** −0.153 −0.185 −0.225 −0.245 1 Fe 0.426** 0.544** 0.367* 0.495** 0.373** 0.434** −0.063 0.209 1 Mn 0.172 0.305* 0.212 0.064 0.013 0.01 0.268 0.193 0.238 1 Ti −0.196 −.368* −.570** −0.264 −0.242 −.300* −0.217 0.431** −0.201 −0.053 1 V −0.151 −0.141 −0.217 −0.131 −0.242 −0.265 −0.218 0.736** 0.371** 0.181 0.557** 1 Co 0.782** 0.777** 0.207 0.805** 0.843** 0.872** −0.016 −0.043 0.626** 0.143 −0.179 −0.067 1 Ni 0.543** 0.685** 0.550** 0.565** 0.551** 0.550** 0.061 0.061 0.519** 0.253 −.317* 0.11 0.486** 1 注: **表示相关系数在0.01水平上显著,*表示相关系数在0.05水平上显著 表 7 成分矩阵
Table 7. Component matrix
成分
Element初始特征值
Initial eigenvalue提取载荷平方和
Extract the sum of squares of the load旋转后的成分矩阵a
Rotated component matrix a特征值
Eigenvalue贡献率 (%)
Contribution累积 (%)
Heap特征值
Eigenvalue贡献率 (%)
Contribution累积 (%)
Heap重金属
Heavy metalPC1 PC2 PC3 PC4 1 13.17 47.05 47.05 13.17 47.05 47.05 Cd 0.97 −0.15 0.11 −0.02 2 4.98 17.78 64.83 4.98 17.78 64.83 Cu 0.96 −0.17 0.17 −0.03 3 3.30 11.77 76.60 3.30 11.77 76.60 As 0.95 −0.06 0.19 0.01 4 1.98 7.07 83.67 1.98 7.07 83.67 Pb 0.94 −0.07 0.11 0.17 5 1.29 4.60 88.27 Co 0.89 0.09 0.15 −0.04 6 1.06 3.80 92.07 Zn 0.87 −0.02 0.35 0.18 7 0.88 3.14 95.21 V −0.12 0.92 −0.02 −0.01 8 0.50 1.78 96.98 Be −0.09 0.86 −0.15 −0.02 9 0.38 1.34 98.32 Cr 0.21 −0.28 0.77 0.31 10 0.21 0.74 99.06 Ti −0.10 0.52 −0.71 −0.03 11 0.12 0.44 99.50 Ni 0.51 0.21 0.63 0.11 12 0.10 0.34 99.85 Fe 0.44 0.47 0.59 −0.04 13 0.03 0.12 99.97 Ba 0.01 −0.31 0.05 0.81 -
[1] 王庆日. 城市绿地的价值及其评估研究[D]. 杭州: 浙江大学, 2003. [2] 生态环境部, 国家市场监督管理总局. GB 15618—2018 土壤环境质量 农用地土壤污染风险管控标准(试行)[S]. 北京: 中国环境出版集团, 2018. [3] 生态环境部, 国家市场监督管理总局. GB 36600—2018 土壤环境质量 建设用地土壤污染风险管控标准(试行)[S]. 北京: 中国环境出版集团, 2018. [4] 柴 磊, 王 新, 马 良, 等. 基于PMF模型的兰州耕地土壤重金属来源解析[J]. 中国环境科学, 2020, 40(9): 3919 − 3929. doi: 10.3969/j.issn.1000-6923.2020.09.025 [5] Xia X, Chen X, Liu R, et al. Heavy metals in urban soils with various types of land use in Beijing, China[J]. Journal of Hazardous Materials, 2011, 186(2-3): 2043 − 2050. doi: 10.1016/j.jhazmat.2010.12.104 [6] 孙变变, 赵银鑫, 常 丹, 等. 银川市城市绿地土壤重金属分布特征及其生态风险评价[J]. 水土保持研究, 2020, 27(6): 262 − 268,277. [7] 陈佳林, 李仁英, 谢晓金, 等. 南京市绿地土壤重金属分布特征及其污染评价[J]. 环境科学, 2021, 42(2): 909 − 916. [8] 李吉玫, 张毓涛. 乌鲁木齐不同功能区林带土壤重金属污染特征分析[J]. 生态环境学报, 2019, 28(9): 1859 − 1866. [9] Glennon M M, Harris P, Ottesen R T, et al. The Dublin SURGE Project: geochemical baseline for heavy metals in topsoils and spatial correlation with historical industry in Dublin, Ireland[J]. Environmental Geochemistry and Health, 2014, 36(2): 235 − 254. doi: 10.1007/s10653-013-9561-8 [10] Efstratios Kelepertzis, Ariadne Argyraki. Geochemical associations for evaluating the availability of potentially harmful elements in urban soils: Lessons learnt from Athens, Greece[J]. Applied Geochemistry, 2015, 59: 63 − 73. doi: 10.1016/j.apgeochem.2015.03.019 [11] 滕吉艳. 上海城市中心区不同类型绿地土壤重金属污染特征[J]. 土壤通报, 2021, 52(4): 927 − 933. [12] 王天欣, 陆继龙, 赵 威, 等. 长春市建成区土壤重金属污染与生态风险评价[J]. 世界地质, 2021, 40(2): 467 − 474. doi: 10.3969/j.issn.1004-5589.2021.02.025 [13] 吉芬芬, 华江环, 雷东桥, 等. 黄石典型城市小型浅水湖泊沉积物重金属污染特征及潜在生态风险评价[J]. 福建师范大学学报(自然科学版), 2021, 37(3): 36 − 47. [14] 许大毛, 张家泉, 占长林, 等. 有色金属冶炼厂周边地表水和农业土壤中重金属污染特征与评价[J]. 环境化学, 2016, 35(11): 2305 − 2314. doi: 10.7524/j.issn.0254-6108.2016.11.2016040701 [15] 黄石市统计局, 国家统计局黄石调查队. 黄石市统计年鉴[M]. 黄石: 黄石市统计局, 2020: 127-133, 276. [16] Muller G. Index of Geo-accumulation in Sediments of the Rhine River[J]. Geo Journal, 1969, 2(3): 109 − 118. [17] 李姗姗, 谭光超, 彭晓晨, 等. 重要风险区域土壤重金属污染特征及来源分析[J]. 资源环境与工程, 2019, 33(04): 495 − 498. [18] 吕 典, 金 晶, 林邦俊, 等. 网湖流域不同类型土壤重金属含量及风险评价[J]. 林业调查规划, 2020, 45(02): 31 − 37 + 49. doi: 10.3969/j.issn.1671-3168.2020.02.006 [19] Förstner U, Ahlf U, Calmano W, et al. Sediment Criteria Development. Sediments and Environmental Geochemistry, 311–338. doi: 10.1007/978-3-642-75097-7_18 [20] Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975 − 1001. doi: 10.1016/0043-1354(80)90143-8 [21] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, (2): 112 − 115. doi: 10.3969/j.issn.1003-6504.2008.02.030 [22] 陈小敏, 朱保虎, 杨 文, 等. 密云水库上游金矿区土壤重金属空间分布、来源及污染评价[J]. 环境化学, 2015, 34(12): 2248 − 2256. doi: 10.7524/j.issn.0254-6108.2015.12.2015071601 [23] 杨子鹏, 肖荣波, 陈玉萍, 等. 华南地区典型燃煤电厂周边土壤重金属分布、风险评估及来源分析[J]. 生态学报, 2020, 40(14): 4823 − 4835. [24] 赵 靓, 梁云平, 陈 倩, 等. 中国北方某市城市绿地土壤重金属空间分布特征、污染评价及来源解析[J]. 环境科学, 2020, 41(12): 5552 − 5561. [25] 夏建东, 龙锦云, 高亚萍, 等. 巢湖沉积物重金属污染生态风险评价及来源解析[J]. 地球与环境, 2020, 48(2): 220 − 227. [26] 王美艳, 柳 洋, 朱惟琛, 等. 天津市中心城区绿地土壤重金属污染分布现状分析[J]. 环境科学与技术, 2020, 43(4): 184 − 191. [27] 新冶钢; 建设最具核心竞争力的特钢企业[N]. 湖北日报, 2013-04-27(006). [28] 杨文聪, 祁士华, 邢新丽, 等. 大冶冶炼厂对周边土壤重金属贡献机制研究[J]. 环境科学与技术, 2020, 43(S1): 110 − 115. [29] 刘玮玲, 肖文胜, 张家泉, 等. 黄石市大气降尘中重金属污染及其化学形态特征研究[J]. 湖北理工学院学报, 2014, 30(2): 32 − 37. doi: 10.3969/j.issn.2095-4565.2014.02.008 [30] 姚瑞珍, 张 勇, 王亚良, 等. 黄石市大气降尘中重金属污染特征与评价[J]. 地球与环境, 2016, 44(2): 212 − 218. doi: 10.14050/j.cnki.1672-9250.2016.02.010 [31] 张 磊, 宋凤斌, 王晓波. 中国城市土壤重金属污染研究现状及对策[J]. 生态环境, 2004, (2): 258 − 260. -