Effects of Biochar on the Antioxidant Enzyme Activities and Mineral Element Contents In Cucumber Leaves under Salt Stress
-
摘要:
目的 研究生物炭对盐胁迫下设施黄瓜生长和生理特性的影响。 方法 以设施黄瓜(Cucumis sativus L.)专用品种‘翠龙’为试验材料,开展温室盆栽试验,设非盐胁迫和盐胁迫下栽培基质(草炭∶蛭石 = 2∶1)中添加0%(B0,w/w)、3%(B3)和5%(B5)的花生壳炭共6个处理,调查黄瓜的生长、产量、品质、叶片抗氧化酶活性以及矿质元素含量等指标。 结果 生物炭施用可明显提高黄瓜的耐盐性,在NaCl胁迫下,B5处理黄瓜的株高、最大单叶叶面积、产量和抗坏血酸含量均显著高于不施生物炭处理,且B3和B5处理的黄瓜果实硝酸盐含量在非盐胁迫和盐胁迫下均显著低于对照。盐胁迫下,春、秋两季栽培试验中B5处理黄瓜产量分别为对照处理的2.97倍和2.57倍。生物炭处理使黄瓜叶片抗氧化酶活性在盐胁迫下维持较高水平,特别是B5处理黄瓜植株叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)活性与对照相比显著增加而丙二醛(MDA)含量与对照相比显著降低。盐胁迫下,生物炭处理黄瓜顶部叶片中氮和钾的含量与对照相比显著升高,磷、钠、钙和镁的含量与对照相比显著降低;而在底部叶片中除钠含量显著高于对照外,其他元素的含量在不同生物炭施用量间存在差异。 结论 基质中添加适量的生物炭促进盐胁迫下黄瓜生长,增强抗氧化酶活性,促进氮和钾在顶部叶片的累积,减少钠的累积,缓解盐胁迫对黄瓜的伤害,且以添加5%生物炭处理效果较好。 Abstract:Objective The aim of this study was to explore the effects of biochar application on the growth and physiological characteristics of cucumber (Cucumis sativus L.) under salt stress. Method Pot experiments were conducted using the greenhouse cultivar ‘Cuilong’. Peanut shell biochar with mass ratios of 0% (B0), 3% (B3) and 5% (B5) was added to the cultivation substrate (peat∶vermiculite = 2∶1) with or without 150 mmol L−1 NaCl, respectively. The cucumber growth, yield, fruit quality, antioxidant enzyme activity and leaf mineral nutrient content were investigated. Result Results showed that biochar application could significantly improve the salt tolerance of cucumber. Under NaCl stress, the plant height, maximum single leaf area, yield and ascorbic acid content of cucumber treated with B5 were significantly higher than those without biochar treatment, and the nitrate content of cucumber fruit treated with B3 and B5 was significantly lower than that of the control under both non-salt stressed and salt stressed treatments. The cucumber yields of B5 treatment in the spring and autumn cultivation experiments were 2.97 times and 2.57 times than those of the control treatment under salt stress, respectively. Higher levels of antioxidant enzyme activity were observed in biochar-treated cucumber leaves under salt stress. The activities of SOD and POD in cucumber leaves of B5 treatment were significantly higher compared with those in the control, while the content of MDA was significantly lower. Under salt stress, the contents of N and K+ in the top leaves of biochar-treated cucumber were significantly higher compared with those in the control, while the contents of P, Na+, Ca2+ and Mg2+ were significantly lower. In the bottom leaves, the change of the nutrient elements content was related to the biochar application rates, except for the Na+ content which was significantly higher in the bottom leaves than that of the control. Conclusion Appropriate biochar application to the substrate can alleviate the salt stress of cucumber, evidenced by enhanced growth performance, antioxidant enzyme activities, and higher N and K+ accumulation coupled with lower Na+ accumulation in the top leaves. The application of 5% biochar is recommended for substrate amendment to alleviate the salt stress in greenhouse cucumber production. -
Key words:
- Biochar /
- Cucumber /
- Salt stress /
- Antioxidant enzyme activity /
- Mineral nutrient element
-
表 1 生物炭施用对盐胁迫条件下黄瓜生长的影响
Table 1. Effect of biochar on the growth of cucumber with NaCl treatment
处理
Treatment株高(cm)
Plant height叶片数
Number of leaves茎粗(mm)
Stem diameter最大单叶叶面积(cm2)
Maximum single leaf areaNaCl 生物炭
Biochar0 mmol L−1 B0 135.67 ± 8.81 a 12.67 ± 0.75 a 8.45 ± 0.43 a 462.90 ± 46.80 a B3 129.33 ± 5.55 a 12.38 ± 0.53 a 8.36 ± 0.41a 450.63 ± 38.53 a B5 136.25 ± 7.61 a 12.58 ± 0.36 a 8.23 ± 0.43a 454.65 ± 54.02 a 150 mmol L−1 B0 100.92 ± 12.49 d 10.38 ± 0.93 b 6.97 ± 0.52 b 312.74 ± 51.90 c B3 103.82 ± 6.72 cd 10.68 ± 0.40 b 6.88 ± 0.44 b 336.87 ± 37.19 bc B5 109.92 ± 10.06 b 10.63 ± 0.83 b 7.00 ± 0.60 b 354.94 ± 42.48 b 注:同一列中不同的小写字母表示差异显著(P < 0.05),下同。 表 2 生物炭施用对盐胁迫条件下黄瓜产量的影响
Table 2. Effect of biochar on the yield of cucumber with NaCl treatment
处理
Treatment春季
Spring growing season秋季
Autumn growing seasonNaCl 生物炭
Biochar瓜条数
Number of fruits产量 (kg)
Yield瓜条数
Number of fruits产量 (kg)
Yield0 mmol L−1 B0 113.33 ± 5.13 a 15.93 ± 0.06 a 38.67 ± 4.16 b 5.00 ±0.44 b B3 103.33 ± 4.51 a 15.92 ± 0.20 a 37.5 ± 4.36 b 4.99 ± 0.40 b B5 103.00 ± 2.00 a 15.11 ± 0.49 a 52.00 ± 7.81 a 7.26 ± 1.33 a 150 mmol L−1 B0 18.00 ± 1.00 d 1.70 ± 0.07 d 7.67 ± 1.15 e 0.82 ± 0.13 b B3 30.33 ± 8.39 c 3.03 ± 0.76 c 11.00 ± 1.00 de 0.92 ± 0.15 b B5 44.67 ± 3.21 b 5.05 ± 0.28 b 18.67 ± 2.08 c 2.11 ± 0.35 a -
[1] 黄绍文, 高 伟, 唐继伟, 等. 我国主要菜区耕层土壤盐分总量及离子组成[J]. 植物营养与肥料学报, 2016, 22(4): 965 − 977. [2] 李 涛, 于 蕾, 吴 越, 等. 山东省设施菜地土壤次生盐渍化特征及影响因素[J]. 土壤学报, 2018, 55(1): 100 − 110. [3] 魏 丹, 李 艳, 秦程程, 等. 环渤海地区设施蔬菜土壤障碍与治理措施[J]. 中国土壤与肥料, 2021, (5): 303 − 309. [4] Chen W, Meng J, Han X, et al. Past, present, and future of biochar[J]. Biochar, 2019, 1(1): 75 − 87. [5] Saifullah, Dahlawi S, Naeem A, et al. Biochar application for the remediation of salt-affected soils: challenges and opportunities[J]. Science of the Total Environment, 2017, 625: 320 − 335. [6] Thomas S C, Frye S, Gale N, et al. Biochar mitigates negative effects of salt additions on two herbaceous plant species[J]. Journal of Environmental Management, 2013, 129: 62 − 68. [7] Hammer E C, Forstreuter M, Rillig M C, et al. Biochar increases Arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress[J]. Applied Soil Ecology, 2015, 96: 114 − 121. doi: 10.1016/j.apsoil.2015.07.014 [8] Kim H S, Kim K R, Yang J E, et al. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L. ) response[J]. Chemosphere, 2016, 142: 153 − 159. doi: 10.1016/j.chemosphere.2015.06.041 [9] Farhangi-Abriz S, Torabian S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress[J]. Ecotoxicology and Environmental Safety, 2017, 137: 64 − 70. doi: 10.1016/j.ecoenv.2016.11.029 [10] Zheng H, Wang X, Chen L, et al. Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant, Cell & Environment, 2018, 41(3): 517-532. [11] 赖 伟, 何 鹏, 徐明远, 等. 黄瓜耐盐性与耐盐相关基因的研究进展[J]. 中国蔬菜, 2020, (6): 16 − 22. [12] 张功臣, 陈建美, 赵征宇, 等. 生物质炭对设施连作土壤性质及黄瓜生长和产量的影响[J]. 土壤通报, 2018, 49(3): 659 − 666. [13] 孙德智, 韩晓日, 杨恒山, 等. 外源NO对Ca(NO3)2胁迫下番茄叶片活性氧损伤的缓解效应[J]. 土壤学报, 2019, 56(3): 728 − 738. [14] 裴孝伯, 李世诚, 张福墁, 等. 温室黄瓜叶面积计算及其与株高的相关性研究[J]. 中国农学通报, 2005, 8: 80 − 82. doi: 10.3969/j.issn.1000-6850.2005.08.022 [15] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2001. [16] Ukeda H, Kawana D, Maeda S, et al. Spectrophotometric assay for superoxide dismutase based on the reduction of highly water-soluble tetrazolium salts by xanthine-xanthine oxidase[J]. Bioscience, Biotechnology, and Biochemistry, 1999, 63(3): 485 − 488. doi: 10.1271/bbb.63.485 [17] 鲍士旦. 土壤农化分析. 第三版[M]. 北京: 中国农业出版社, 2013. [18] He K, He G, Wang C, et al. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil[J]. Applied Soil Ecology, 2020, 155: 103674. doi: 10.1016/j.apsoil.2020.103674 [19] Elbashier M M A, Xiaohou S, Ali A A S, et al. Effect of digestate and biochar amendments on photosynthesis rate, growth parameters, water use efficiency and yield of Chinese melon (Cucumis melo L. ) under saline irrigation. Agronomy, 2018, 8: 22. [20] She D, Sun X, Gamareldawla A H D, et al. Benefits of soil biochar amendments to tomato growth under saline water irrigation[J]. Scientific Reports, 2018, 8(1): 14743. doi: 10.1038/s41598-018-33040-7 [21] 周俊国, 扈惠灵, 曾 凯, 等. NaCl胁迫下黄瓜幼苗无机离子的渗透调节效应[J]. 河南农业科学, 2010, (2): 79 − 82. doi: 10.3969/j.issn.1004-3268.2010.02.023 [22] Lin X W, Xie Z B, Zheng J Y, et al. Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. European Journal of Soil Science, 2015, 66: 329-338. [23] Sun J, He F, Shao H, et al. Effects of biochar application on Suaeda salsa growth and saline soil properties. Environmental Earth Sciences, 2016, 75: 1-6. [24] 刘东让, 董邵云, 苗 晗, 等. 黄瓜耐盐胁迫遗传育种研究进展[J]. 中国蔬菜, 2021, (7): 14 − 23. [25] 曹齐卫, 李利斌, 孔素萍, 等. 不同黄瓜品种幼苗对等渗Mg(NO3)2和NaCl胁迫的生理响应[J]. 应用生态学报, 2015, 26(4): 1171 − 1178. [26] Hasanuzzaman M, Raihan M, Hossain R, et al. Biochar and chitosan regulate antioxidant defense and methylglyoxal detoxification systems and enhance salt tolerance in jute (Corchorus olitorius L. )[J]. Antioxidants, 2021, 10: 2017. doi: 10.3390/antiox10122017 [27] Mehmood S, Ahmed W, Ikram M, et al. Chitosan modified biochar increases soybean (Glycine max L. ) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes[J]. Plants, 2020, 9: 1173. doi: 10.3390/plants9091173 [28] 周翠香, 孙军娜, 张馨文, 等. 生物炭对盐地碱蓬抗氧化酶活性及渗透调节物质含量的影响[J]. 鲁东大学学报:自然科学版, 2019, 35(2): 110 − 115. [29] 王素平, 贾永霞, 郭世荣, 等. 多胺对盐胁迫下黄瓜(Cucumis sativus L. )幼苗体内K + 、Na + 和Cl−含量及器官间分布的影响[J]. 生态学报, 2007, 27(3): 1122 − 1129. doi: 10.3321/j.issn:1000-0933.2007.03.037 [30] Akhtar S S, Andersen M N, Liu F. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress[J]. Agricultural Water Management, 2015, 158: 61 − 68. doi: 10.1016/j.agwat.2015.04.010 [31] Lashari M S, Ye Y X, Ji H S, et al. Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment[J]. Journal of the Science of Food & Agriculture, 2015, 95(6): 1321 − 1327. [32] Xu G, Sun J N, Shao H B, et al. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity[J]. Ecological Engineering, 2014, 62: 54 − 60. doi: 10.1016/j.ecoleng.2013.10.027 -