留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遥感数据融合的黄河三角洲土壤盐分时空变化研究

余泽鸿 翁永玲 范兴旺

余泽鸿, 翁永玲, 范兴旺. 基于遥感数据融合的黄河三角洲土壤盐分时空变化研究[J]. 土壤通报, 2022, 53(4): 757 − 767 doi: 10.19336/j.cnki.trtb.2021102702
引用本文: 余泽鸿, 翁永玲, 范兴旺. 基于遥感数据融合的黄河三角洲土壤盐分时空变化研究[J]. 土壤通报, 2022, 53(4): 757 − 767 doi: 10.19336/j.cnki.trtb.2021102702
YU Ze-hong, WENG Yong-ling, FAN Xing-wang. Investigation of Spatio-temporal Variations of Soil Salinization in the Yellow River Delta Based on Remote Sensing Data Fusion Technique[J]. Chinese Journal of Soil Science, 2022, 53(4): 757 − 767 doi: 10.19336/j.cnki.trtb.2021102702
Citation: YU Ze-hong, WENG Yong-ling, FAN Xing-wang. Investigation of Spatio-temporal Variations of Soil Salinization in the Yellow River Delta Based on Remote Sensing Data Fusion Technique[J]. Chinese Journal of Soil Science, 2022, 53(4): 757 − 767 doi: 10.19336/j.cnki.trtb.2021102702

基于遥感数据融合的黄河三角洲土壤盐分时空变化研究

doi: 10.19336/j.cnki.trtb.2021102702
基金项目: 国家自然科学基金项目(41471352)资助
详细信息
    作者简介:

    余泽鸿(1997−),男,浙江杭州人,硕士研究生,主要从事遥感应用研究。E-mail: nocchii97@gmail.com

    通讯作者:

    E-mail: wengyongling@seu.edu.cn

  • 中图分类号: TP753

Investigation of Spatio-temporal Variations of Soil Salinization in the Yellow River Delta Based on Remote Sensing Data Fusion Technique

  • 摘要:   目的  研究2005 ~ 2018年黄河三角洲地区土壤盐分在年内和年际尺度上的时空变化特征。  方法  基于2005 ~ 2018年春季覆盖黄河三角洲地区的MODIS和Landsat系列数据,采用增强型自适应反射率时空融合模型(ESTARFM)获得30米分辨率高频地表反射率数据。基于2005年实测土壤盐分数据和Landsat地表反射率数据,采用随机森林方法建立土壤盐分反演模型,反演2005 ~ 2018年黄河三角洲地区春季土壤盐分数据,分析土壤盐分含量的时空演变特征。  结果  ESTARFM融合数据具有较为理想的精度,地表反射率总体误差在4%以内。年内尺度上,2 ~ 4月份黄河三角洲地区土壤盐分含量呈总体下降趋势,3 ~ 4月份存在盐分含量短期回升现象,进入4月份后,土壤盐分含量明显下降,非盐渍土和轻度盐渍土占比增加。年际尺度上,2005 ~ 2018年研究区土壤盐分含量呈先升后降趋势,最大值出现在2009年(4.262 g kg−1),最小值出现在2005年(3.604 g kg−1)。2009年以来,研究区内非盐渍土和轻度盐渍土面积显著增加,盐土面积显著减少,盐渍化程度明显改善。  结论  增强型自适应反射率时空融合模型可用于高频次土壤盐分数据反演,反演结果可加深对土壤盐分年内和年际变化规律的认识。
  • 图  1  研究区地理位置及土壤采样点位置分布

    Figure  1.  Geographical location of the study area and spatial distribution of soil samples

    图  2  Landsat影像(a ~ c)与ESTARFM融合影像(d ~ f)对比(R = 4, G = 3, B = 2)

    Figure  2.  Comparison of Landsat images(a ~ e) and ESTARFM fused images(d ~ f) (R = 4, G = 3, B = 2)

    图  3  Landsat与ESTARFM 融合数据各波段反射率对比

    Figure  3.  Comparison of reflectance between Landsat image and ESTARFM fused image in each band

    图  4  基于RF模型的实测盐分和预测盐分值比较

    Figure  4.  Comparison of measured and predicted soil salt content based on RF model

    图  5  2005 ~ 2018年春季土壤盐分反演制图结果

    Figure  5.  Mapping results of soil salt content in the springtime from 2005 to 2018

    图  6  2005 ~ 2018年研究区年内(a ~ e)和年际(f)各等级盐渍土占比情况

    Figure  6.  Intra-annual (a ~ e) and inter-annual (f) proportions of different levels of saline soils in the study area from 2005 to 2018

    图  7  2005 ~ 2018年研究区年内(a ~ e)和年际(f)平均土壤盐分含量变化

    Figure  7.  Intra-annual (a ~ e) and inter-annual (f) variations of soil salt content in the study area from 2005 to 2018

    表  1  盐渍土分级标准[18]

    Table  1.   Classification standard of saline soils

    盐化等级
    Level of salinization
    非盐渍土
    Non-saline soil
    轻度
    Slightly
    中度
    Medium
    重度
    Heavy
    盐土
    Saline soil
    盐分总含量(g kg−1 0.0 ~ 1.0 1.0 ~ 2.0 2.0 ~ 4.0 4.0 ~ 6.0 > 6.0
    下载: 导出CSV

    表  2  遥感数据类型及获取日期

    Table  2.   Remotely sensed data and the acquisition date

    数据类型
    Data type
    行列号
    Row and column
    年份
    Year
    获取日期
    Acquisition date
    Landsat-5 TM 121/34 2005 Feb-01, Apr-22
    2009 Jan-27, Apr-01, May-03
    Landsat-7 ETM + 121/34 2012 Jan-12, Apr-01, Apr-17, May-03
    2015 Feb-05, Apr-26
    2018 Feb-13, Apr-02, Apr-18, May-04
    MCD43A4 h27v05 2005 Feb-01, Feb-17, Mar-05,Mar-21, Apr-06, Apr-22
    2009 Jan-27, Feb-12, Feb-28,Mar-16, Apr-01, Apr-17
    2012 Jan-12, Feb-13, Feb-29,Mar-16, Apr-01
    2015 Feb-05, Feb-21, Mar-09,Mar-25, Apr-10, Apr-26
    2018 Feb-13, Mar-01, Mar-17, Apr-02
    下载: 导出CSV

    表  3  Landsat与MODIS传感器波段对应关系

    Table  3.   Spectral band settings of Landsat and MODIS sensors

    TM波段
    TM band
    波长(nm)
    Wavelength
    ETM + 波段
    ETM + band
    波长(nm)
    Wavelength
    MODIS波段
    MODIS band
    波长(nm)
    Wavelength
    Band1 450 ~ 520 Band1 450 ~ 515 Band3 459 ~ 479
    Band2 520 ~ 600 Band2 525 ~ 605 Band4 545 ~ 565
    Band3 630 ~ 690 Band3 630 ~ 690 Band1 620 ~ 670
    Band4 760 ~ 900 Band4 750 ~ 900 Band2 841 ~ 876
    Band5 1550 ~ 1750 Band5 1550 ~ 1750 Band6 1628 ~ 1652
    Band7 2080 ~ 2350 Band7 2090 ~ 2350 Band7 2105 ~ 2155
    下载: 导出CSV

    表  4  不同等级盐渍土在对应年分区间的动态度(%)

    Table  4.   Dynamic degrees (%) of different levels of saline soils in the corresponding years

    年份区间
    Year
    非盐土
    Non saline soil
    轻度
    Slightly
    中度
    Medium
    重度
    Heavy
    盐土
    Saline soil
    2005 ~ 2009 2.1 −14.3 −4.8 −1.8 28.9
    2009 ~ 2012 −1.8 −1.8 5.0 7.7 −11.4
    2012 ~ 2015 12.0 31.5 −2.7 −10.7 9.0
    2015 ~ 2018 5.2 −5.0 −1.1 6.9 −6.3
    下载: 导出CSV

    表  5  不同等级盐渍土间转移矩阵(%)

    Table  5.   Transfer matrix among different levels of saline soils

    类型
    Type
    年份区间
    Year
    非盐渍土
    Non saline soil
    轻度
    Slightly
    中度
    Medium
    重度
    Heavy
    盐土
    Saline soil
    水域及建设用地
    Water area and
    construction land
    非盐渍土 2005 ~ 2009 54.1 4.7 5.7 6.1 0.8 1.6
    2009 ~ 2012 70.4 3.6 2.5 4.3 1.2 0.7
    2012 ~ 2015 70.6 13.1 10.2 5.6 1.1 1.6
    2015 ~ 2018 66.3 11.6 9.6 9.5 1.1 1.1
    轻度 2005 ~ 2009 8.1 12.3 5.7 1.7 0.9 1.7
    2009 ~ 2012 3.2 20.7 7.2 2.7 1.6 2.2
    2012 ~ 2015 2.4 25.4 16.0 7.3 2.0 2.3
    2015 ~ 2018 5.2 26.2 12.3 4.5 1.1 1.4
    中度 2005 ~ 2009 17.3 44.8 35.5 13.2 5.0 8.7
    2009 ~ 2012 12.3 53.1 52.1 26.5 8.9 11.4
    2012 ~ 2015 8.5 32.8 39.7 27.4 9.9 7.8
    2015 ~ 2018 12.4 40.6 44.0 24.1 6.7 6.9
    重度 2005 ~ 2009 11.0 21.1 30.0 28.0 13.0 12.9
    2009 ~ 2012 9.6 15.2 29.0 41.2 31.0 17.1
    2012 ~ 2015 14.3 9.9 18.4 26.3 19.4 10.3
    2015 ~ 2018 12.0 11.4 22.7 37.7 28.5 11.5
    盐土 2005 ~ 2009 3.3 5.9 12.8 35.0 59.0 17.0
    2009 ~ 2012 1.2 1.7 3.6 12.2 37.8 13.1
    2012 ~ 2015 1.8 4.5 6.2 20.4 47.5 20.2
    2015 ~ 2018 0.8 1.5 2.9 12.4 44.5 16.8
    水域及建设用地 2005 ~ 2009 6.2 11.2 10.5 16.0 21.3 58.1
    2009 ~ 2012 3.3 5.8 5.6 13.1 19.4 55.5
    2012 ~ 2015 2.5 14.2 9.5 13.1 20.2 57.8
    2015 ~ 2018 3.3 8.6 8.6 11.8 18.1 62.4
    下载: 导出CSV
  • [1] Fan X, Pedroli B, Liu G, et al. Soil Salinity Development in the Yellow River Delta in Relation to Groundwater Dynamics[J]. Land Degradation & Development, 2012, 23(2): 175 − 189.
    [2] Fan H, Huang H, Zeng T. Impacts of Anthropogenic Activity on the Recent Evolution of the Huanghe (Yellow) River Delta[J]. Journal of Coastal Research, 2006, 224: 919 − 929. doi: 10.2112/04-0150.1
    [3] Rahman M, Penny G, Mondal M, et al. Salinization in Large River Deltas: Drivers, Impacts and Socio-Hydrological Feedbacks[J]. Water Security, DOI: 10.1016/j.wasec.2019.100024.
    [4] 范晓梅, 刘高焕, 唐志鹏, 等. 黄河三角洲土壤盐渍化影响因素分析[J]. 水土保持学报, 2010, 24(1): 139 − 144.
    [5] Weng Y, Gong P, Zhu Z. A Spectral Index for Estimating Soil Salinity in the Yellow River Delta Region of China using EO-1 Hyperion Data[J]. Pedosphere, 2010, 20(3): 378 − 388. doi: 10.1016/S1002-0160(10)60027-6
    [6] Weng Y, Gong P, Zhu Z. Reflectance Spectroscopy for the Assessment of Soil Salt Content in Soils of the Yellow River Delta of China[J]. International Journal of Remote Sensing, 2008, a,29(19): 5511 − 5531.
    [7] Weng Y, Gong P, Zhu Z. Soil Salt Content Estimation in the Yellow River Delta with Satellite Hyperspectral Data[J]. Canadian Journal of Remote Sensing, 2008, 34(3): 259 − 270.
    [8] Farifteh J, Van der Meer F, Atzberger C, et al. Quantitative Analysis of Salt-Affected Soil Reflectance Spectra: A Comparison of two Adaptive Methods (PLSR and ANN)[J]. Remote Sensing of Environment, 2007, 110(1): 59 − 78. doi: 10.1016/j.rse.2007.02.005
    [9] Hoa P V, Giang N V, Binh N A, et al. Soil Salinity Mapping Using SAR Sentinel-1 Data and Advanced Machine Learning Algorithms: A Case Study at Ben Tre Province of the Mekong River Delta (Vietnam)[J]. Remote Sensing, DOI: 10.3390/rs11020128.
    [10] Bian L, Wang J, Liu J, et al. Spatiotemporal Changes of Soil Salinization in the Yellow River Delta of China from 2015 to 2019[J]. Sustainability, DOI: 10.3390/su13020822.
    [11] Fan X, Weng Y, Tao J, et al. Towards Decadal Soil Salinity Mapping using Landsat Time Series Data[J]. International Journal of Applied Earth Observations and Geoinformation, 2016, 52: 32 − 41. doi: 10.1016/j.jag.2016.05.009
    [12] 陈文娇, 翁永玲, 范兴旺, 等. 基于光谱转换的土壤盐分反演与动态分析[J]. 东南大学学报(自然科学版), 2017, 47(6): 1233 − 1238. doi: 10.3969/j.issn.1001-0505.2017.06.024
    [13] Gao F, Masek J, Schwaller M, et al. On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2207 − 2218. doi: 10.1109/TGRS.2006.872081
    [14] Zhu X, Chen J, Gao F, et al. An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions[J]. Remote Sensing of Environment:An Interdisciplinary Journal, 2010, 114(11): 2610 − 2623. doi: 10.1016/j.rse.2010.05.032
    [15] 牛忠恩, 闫慧敏, 黄 玫, 等. 基于MODIS-OLI遥感数据融合技术的农田生产力估算[J]. 自然资源学报, 2016, 31(5): 875 − 885. doi: 10.11849/zrzyxb.20150632
    [16] 陈梦露, 李存军, 官云兰, 等. 基于ESTARFM模型的区域农田高时空分辨率影像产生与应用[J]. 作物学报, 2019, 45(7): 1099 − 1110.
    [17] 翁永玲, 宫 鹏. 黄河三角洲盐渍土盐分特征研究[J]. 南京大学学报(自然科学版), 2006, 42(6): 602 − 610. doi: 10.3321/j.issn:0469-5097.2006.06.005
    [18] 王遵亲. 中国盐渍土[M]. 北京: 科学出版社, 1993, 130-211, 312-345.
    [19] Schaaf C B, Gao F, Starhler A H, et al. First Operational BRDF, Albedo Nadir Reflectance Products from MODIS[J]. Remote Sensing of Environment, 2002, 83(1): 135 − 148.
    [20] Wang Z, Schaaf C B, Sun Q, et al. Capturing Rapid Land Surface Dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) Products[J]. Remote Sensing of Environment, 2018, 207: 50 − 64. doi: 10.1016/j.rse.2018.02.001
    [21] Fan X, Liu Y, Tao J, et al. Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression[J]. Remote Sensing, 2015, 7(1): 488 − 511. doi: 10.3390/rs70100488
    [22] Zhu X, Cai F, Tian J, et al. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions. Remote Sensing,DOI: 10.3390/rs10040527.
    [23] 张子璇, 宋雨桐, 张惠中, 等. 水文气候影响下黄河三角洲土壤盐分时空动态[J]. 应用生态学报, 2021, 32(4): 1393 − 1405.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  39
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27
  • 录用日期:  2022-03-24
  • 修回日期:  2022-03-21
  • 刊出日期:  2022-06-17

目录

    /

    返回文章
    返回