Effects of Biochar Application on Basic Physicochemical Properties and Enzyme Activities of Dry Red Soil
-
摘要:
目的 为探究燥红土对不同类型生物炭及施入量的反应,对其基础理化特性及酶活性进行测定,以期为热带地区燥红土的改良提供理论支撑和依据。 方法 以燥红土为研究对象,设置水稻壳(A)、花生壳(B)两种生物炭类型,生物炭施用量设置为10、20、40和60 t hm−2,以不施生物炭为对照(CK),共计9个处理,27个小区。在生物炭施用一年后对0 ~ 30 cm土壤进行取样,用于土壤有机碳、全氮、有效磷、速效钾和含水量以及酶活性的测定。 结果 水稻壳生物炭和花生壳生物炭施用后燥红土养分含量和酶活性有显著改变,其中土壤养分含量和含水量在所有土层均随施用量的增加呈明显升高趋势, 60 t hm−2生物炭处理对燥红土有机碳、全氮、有效磷、速效钾和土壤含水量显著高于其他处理,分别比对照处理高56.84% ~ 140.22%、19.06% ~ 62.92%、26.57% ~ 54.57%、46.31% ~ 135.12%和27.95% ~ 55.28%;土壤蔗糖酶、酸性磷酸酶和过氧化氢酶活性随施用量增加都有不同程度升高,特别是60 t hm−2花生壳生物炭处理对土壤蔗糖酶活性提升尤为显著。土壤脲酶活性在10 ~ 20 cm和20 ~ 30 cm土层随生物炭施用量增加呈显著降低趋势。 结论 施用生物炭对燥红土养分含量、土壤含水量和酶活性有明显改善,可施入40 t hm−2以上的生物炭到0 ~ 30 cm土层作为燥红土改良的重要添加剂。 Abstract:Objective In order to explore the response of dry red soil to the types and application of biochar, the basic physicochemical properties and enzyme activities in soil were measured. Method The biochar of rice hull (A) and peanut hull (B) were selected, and the application rates were set 0 (CK), 10, 20, 40 and 60 t hm−2, respectively. There were 9 treatments and 27 plots in total. One year after biochar application, 0-30 cm soil was sampled for the determination of soil organic carbon, total nitrogen, available phosphorus, available potassium, water content and enzyme activity. Result The results showed that the nutrient content and enzyme activities of dry red soil were significantly changed after the application of rice shell biochar and peanut shell biochar, and the content of soil nutrients and moistures were significantly increased with the raising biochar rates in all soil layers. The contents of soil organic carbon, total nitrogen, available phosphorus, available potassium and soil moisture in dry red soil treated with 60 t hm−2 biochar were significantly higher than those of other treatments. The activities of sucrase, acid phosphatase and catalase increased with the raising rates of biochar application in various degrees. In particular, the treatment of 60 t m−2 peanut shell biochar increased soil sucrase activities significantly. And soil urease activities declined with the increasing rates of biochar in 10-20 cm and 20-30 cm. Conclusion Tthe application of biochar can significantly improve the nutrient contents, soil water content and enzyme activities of dry red soil. More than 40 t hm−2 biochar can be applied to 0-30 cm soil layer as an important additive for the improvement of dry red soil. -
Key words:
- Biochar /
- Dry red soil /
- Physicochemical properties /
- Enzymatic activity
-
表 1 供试土壤基本特性
Table 1. Basic physical and chemical properties of soil
pH值
pH value土壤有机碳(g kg−1)
Soil organic matter碱解氮(mg kg−1)
Alkali hydrolyzed nitrogen速效磷(mg kg−1)
Available phosphorus速效钾(mg kg−1)
Available potassium5.97 4.00 34.24 187.50 183.79 表 2 生物炭的基本理化特性
Table 2. Basic physical and chemical properties of biochar
生物炭类型
Biochar typepH值
pH value有机碳(g kg−1)
Organic carbon全氮(g kg−1)
Total nitrogen全磷(g kg−1)
Total phosphorus全钾(g kg−1)
Total potassium水稻壳 9.83 267.64 5.92 1.98 13.75 花生壳 10.05 280.89 9.01 2.39 20.21 表 3 生物炭类型、施入量和土层深度对土壤基本理化性质和酶活性影响的F和P值
Table 3. F and P values of the effects of biochar type, application amount and soil depth on soil basic physical and chemical properties and enzyme activities
因素
FactorF(P)值
F(P)values有机碳
Organic
carbon全氮
Total
nitrogen有效磷
Available
phosphorus有效钾
Available
potassium含水量
Moisture
content蔗糖酶
Sucrase脲酶
Urease酸性磷酸酶
Acid
phosphatase过氧化氢酶
Catalase
activity生物炭类型
Biochar type33.754
(< 0.001)13.768
(< 0.001)102.529
(< 0.001)23.205
(< 0.001)0.540
(0.465)17.513
(< 0.001)22.001
(< 0.001)25.874
(< 0.001)28.658
(< 0.001)施入量
Application amount153.451
(< 0.001)25.158
(< 0.001)103.478
(< 0.001)377.389
(< 0.001)20.716
(< 0.001)185.916
(< 0.001)8.749
(< 0.001)24.813
(< 0.001)59.740
(< 0.001)土层深度
Soil depth49.855
(< 0.001)29.430
(< 0.001)28.966
(< 0.001)287.166
(< 0.001)3.031
(0.056)96.618
(< 0.001)752.022
(< 0.001)292.599
(< 0.001)255.325
(< 0.001)生物炭类型*施入量
Biochar type * application amount15.143
(< 0.001)3.141
(0.021)7.280
(< 0.001)15.484
(< 0.001)2.728
(0.037)129.916
(< 0.001)18.264
(< 0.001)3.012
(0.025)1.911
(0.120)生物炭类型*土层深度
Biochar type * soil depth9.613
(< 0.001)0.753
(0.475)1.134
(0.329)0.185
(0.832)2.514
(0.089)19.041
(< 0.001)7.358
(0.001)2.964
(0.059)1.114
(0.335)生物炭类型*施入量*土层深度
Biochar type * application
amount * soil depth6.026
(< 0.001)1.973
(0.030)3.306
(< 0.001)12.369
(< 0.001)1.383
(0.181)25.551
(< 0.001)13.679
(< 0.001)4.353
(< 0.001)13.621
(< 0.001)表 4 不同土层深度燥红土理化性质与酶活性Pearson相关性分析
Table 4. Pearson correlation analysis between physicochemical properties and enzyme activities of dry red soil in different soil depths
土层深度
Soil depth项目
Item有机碳
Organic
carbon全氮
Total
nitrogen有效磷
Available
phosphorus速效钾
Available
potassium含水量
Moisture
content脲酶
Urease蔗糖酶
Sucrase酸性磷酸酶
Acid
phosphatase0 ~ 10 cm 全氮 0.840** 有效磷 0.722** 0.705** 速效钾 0.803** 0.795** 0.865** 含水量 0.750** 0.561** 0.584** 0.705** 脲酶 0.666** 0.566** 0.521** 0.579** 0.419* 蔗糖酶 0.824** 0.840** 0.596** 0.725** 0.649** 0.587** 酸性磷酸酶 0.568** 0.616** 0.462* 0.511** 0.574** 0.588** 0.759** 过氧化氢酶 0.585** 0.657** 0.561** 0.789** 0.631** 0.418* 0.686** 0.563** 10 ~ 20 cm 全氮 0.825** 有效磷 0.447* 0.282 速效钾 0.820** 0.530** 0.728** 含水量 0.653** 0.434* 0.512** 0.706** 脲酶 0.026 0.035 0.035 0.033 0.223 蔗糖酶 0.680** 0.471* 0.394* 0.634** 0.660** 0.424* 酸性磷酸酶 0.607** 0.462* 0.101 0.454* 0.590** 0.112 0.379 过氧化氢酶 0.914** 0.780** 0.422* 0.791** 0.632** 0.071 0.745** 0.543** 20 ~ 30 cm 全氮 0.715** 有效磷 0.298 0.118 速效钾 0.598** 0.585** 0.668** 含水量 0.404* 0.245 0.582** 0.517** 脲酶 −0.036 0.066 −0.663** −0.585** −0.481* 蔗糖酶 0.339 0.122 0.172 0.116 0.352 −0.215 酸性磷酸酶 0.677** 0.555** 0.158 0.476* 0.262 0.181 0.073 过氧化氢酶 0.401* 0.305 −0.219 0.094 0.231 0.256 −0.186 0.491** 注:*、**表示达到0.05显著水平、0.01极显著水平; -
[1] 曹国良, 张小曳, 王亚强, 等. 中国区域农田秸秆露天焚烧排放量的估算[J]. 科学通报, 2007, (15): 1826 − 1831. doi: 10.3321/j.issn:0023-074x.2007.15.017 [2] International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil[S] : 2012. https://biochar-international.org/characterizationstandard/ [3] Tan Z, Lin C, Ji X, et al. Returning biochar to fields: A review[J]. Applied Soil Ecology, 2017, 116: 1 − 11. doi: 10.1016/j.apsoil.2017.03.017 [4] ALLAN, GIRDLER. Black is the new green[J]. Cycle world, 2014, 53(2): 57 − 59. [5] Lehmann J. A handful of carbon[J]. Nature, 2007, 447(7141): 143 − 144. doi: 10.1038/447143a [6] Sun F F, Lu S G. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1): 26 − 33. doi: 10.1002/jpln.201200639 [7] 李倩倩, 许晨阳, 耿增超, 等. 生物炭对塿土土壤容重和团聚体的影响[J]. 环境科学, 2019, 40(7): 3388 − 3396. [8] 乔丹丹, 吴名宇, 张 倩, 等. 秸秆还田与生物炭施用对黄褐土团聚体稳定性及有机碳积累的影响[J]. 中国土壤与肥料, 2018, (3): 92 − 99. [9] 张红雪, 赵 壮, 王晓朋, 等. 生物炭对亚热带红壤水稳性团聚体及其碳、氮分布的影响[J]. 中国土壤与肥料, 2020, (6): 27 − 33. [10] 陈 敏, 杜相革. 生物炭对土壤特性及烟草产量和品质的影响[J]. 中国土壤与肥料, 2015, (1): 80 − 83. [11] 张晗芝, 黄 云, 刘 钢, 等. 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响[J]. 生态环境学报, 2010, 19(11): 2713 − 2717. doi: 10.3969/j.issn.1674-5906.2010.11.034 [12] 许云翔, 何莉莉, 刘玉学, 等. 施用生物炭6年后对稻田土壤酶活性及肥力的影响[J]. 应用生态学报, 2019, 30(4): 1110 − 1118. [13] 张 艺, 赵 远, 张玉虎, 等. 生物炭及炭基缓释肥对土壤酶活性的影响[J]. 江苏农业科学, 2019, 47(14): 321 − 326. [14] 全国土壤普查办公室. 中国土壤[M]. 中国土壤, 1998. [15] 海南省农业厅土肥站. 海南土壤[M]. 海南土壤, 1994. [16] Leeuwen J V, Djukic I, Bloem J, et al. Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain[J]. European Journal of Soil Biology, 2017, 79: 14 − 20. doi: 10.1016/j.ejsobi.2017.02.001 [17] 鲍士旦. 土壤农化分析. 3版[M]. 土壤农化分析. 3版, 2000. [18] 张英利, 许安民, 尚浩博, 等. AA3型连续流动分析仪测定土壤和植物全氮的方法研究[J]. 西北农林科技大学学报(自然科学版), 2006, 34(10): 128 − 132. [19] 关松荫. 土壤酶及其研究法[M]. 土壤酶及其研究法, 1986. [20] Accari F P, Baronti S, Lugato E, et al. Biochar as a strategy to sequester carbon and increase yield in durum wheat[J]. European Journal of Agronomy, 2011, 34(4): 231 − 238. doi: 10.1016/j.eja.2011.01.006 [21] Kimetu J M, Lehmann J. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents[J]. Soil Research, 2010, 48(7): 577 − 585. doi: 10.1071/SR10036 [22] 黄连喜, 魏 岚, 李衍亮, 等. 花生壳生物炭对土壤改良、蔬菜增产及其持续效应研究[J]. 中国土壤与肥料, 2018, (1): 101 − 107. [23] 李际会, 吕国华, 白文波, 等. 改性生物炭的吸附作用及其对土壤硝态氮和有效磷淋失的影响[J]. 中国农业气象, 2012, 33(2): 220 − 225. [24] Laird D, Fleming P, Wang B, et al. Biochar impact on nutrient leaching from a Midwestern agricultural soil[J]. Geoderma, 2010, 158(3-4): 436 − 442. doi: 10.1016/j.geoderma.2010.05.012 [25] 郭 伟, 陈红霞, 张庆忠, 等. 华北高产农田施用生物质炭对耕层土壤总氮和碱解氮含量的影响[J]. 生态环境学报, 2011, 20(3): 425 − 428. doi: 10.3969/j.issn.1674-5906.2011.03.006 [26] 吕贻忠. 土壤学[M]. 土壤学, 2006. [27] Cui H J, Wang M, Fu M L, et al. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar[J]. Journal of Soils and Sediments, 2011, 11(7): 1135 − 1141. doi: 10.1007/s11368-011-0405-9 [28] 张 祥, 王 典, 姜存仓, 等. 生物炭对我国南方红壤和黄棕壤理化性质的影响[J]. 中国生态农业学报, 2013, 21(8): 979 − 984. [29] 丛 铭, 张梦阳, 夏 浩, 等. 施用生物炭对红壤中不同形态钾含量及小白菜生长的影响[J]. 华中农业大学学报, 2020, 39(4): 22 − 28. [30] 王丹丹, 郑纪勇, 颜永毫, 等. 生物炭对宁南山区土壤持水性能影响的定位研究[J]. 水土保持学报, 2013, 27(2): 101 − 104. [31] 高海英, 何绪生, 陈心想, 等. 生物炭及炭基硝酸铵肥料对土壤化学性质及作物产量的影响[J]. 农业环境科学学报, 2012, 31(10): 1948 − 1955. [32] Czimczik C I, Masiello C A. Controls on black carbon storage in soils[J]. Global Biogeochemical Cycles, 2007, 21(3) [33] Lehmann J, Joseph S. Biochar for environmental management: science and technology[M]. London: Earthscan, 2009: 85-102. [34] 黄剑. 生物炭对土壤微生物量及土壤酶的影响研究[D]. 中国农业科学院, 2012. [35] 陈心想, 耿增超, 王 森, 等. 施用生物炭后塿土土壤微生物及酶活性变化特征[J]. 农业环境科学学报, 2014, 33(4): 751 − 758. -