Dynamic Changes of Soil Erosion in Qianjiangyuan National Park from 2000 to 2019
-
摘要:
目的 揭示钱江源国家公园2000 ~ 2019年间的土壤侵蚀变化规律以及不同功能分区、坡度范围的差异。 方法 基于RUSLE模型得到钱江源国家公园2000 ~ 2019年土壤侵蚀的动态变化情况,并对不同功能分区及不同坡度范围的多年平均模拟土壤侵蚀速率进行分析。 结果 基于RUSLE模型模拟得出,钱江源国家公园2000 ~ 2019年间的模拟土壤侵蚀速率呈线性减小趋势。其中,80%区域处于微度侵蚀,并且微度侵蚀面积呈增加趋势。由于雪灾影响,2008年的模拟土壤侵蚀速率为424.83 t km−2 a−1,显著高于其它年份。不同功能分区的多年平均模拟土壤侵蚀速率具有显著性差异,其中游憩展示区 > 传统利用区 > 核心保护区 > 生态保育区,核心保护区的土壤侵蚀几乎没有受到雪灾影响。5° ~ 8°与8° ~ 15°两个坡度范围的多年模拟土壤侵蚀速率不存在显著差异,其他坡度范围的多年平均模拟土壤侵蚀速率差异性显著,并且各个坡度的模拟土壤侵蚀速率呈逐年降低趋势。 结论 2000 ~ 2019年间,钱江源国家公园总体、各功能分区以及各坡度范围的模拟土壤侵蚀速率呈线性减少趋势,而多年平均模拟土壤侵蚀速率在不同功能分区之间和不同的坡度范围之间有显著差异,该研究可为钱江源国家公园的土壤侵蚀防治以及水土保持措施规划提供参考。 Abstract:Objective The change law of soil erosion will be revealed in Qianjiangyuan National Park from 2000 to 2019, as well as the differences in different functional zones and slope ranges. Method Dynamic changes of soil erosion in Qianjiangyuan National Park from 2000 to 2019 were obtained based on the RUSLE model. Then the average simulated soil erosion rate of different functional zones and different slope ranges were analyzed. Result The results showed that the simulated soil erosion rate of Qianjiangyuan National Park from 2000 to 2019 showed a linear decreasing trend. About 80% of the Qianjiangyuan National Park was slight erosion, and the area of slight erosion showed an increasing trend. The simulated soil erosion rate in 2008 was 424.83 t km−2 a−1, which was significantly higher than other years due to the snow disaster. The average simulated soil erosion rates of different functional zones were significantly different, with the order of Recreational Display area > Traditional Use area > Core Protection area > Ecological Conservation area. The soil erosion of the Core Protection area was almost not affected by the snow disaster. The simulated soil erosion rate of each slope range showed a decreasing trend year by year. There were no significant differences in the simulated soil erosion rates between the two slope ranges of 5°-8° and 8°-15°, and the average simulated soil erosion rates of other slope ranges had significant differences. Conclusion The simulated soil erosion rates of the whole Qianjiangyuan National Park, each functional zone and each slope range show a linear decreasing trend. And the average simulated soil erosion rates differ significantly between different functional zones and between different slope ranges. This study can provide reference for soil erosion control and soil and water conservation measures planning in Qianjiangyuan National Park. -
Key words:
- RUSLE model /
- Qianjiangyuan National Park /
- Dynamic changes /
- Functional zone
-
表 1 2000 ~ 2019年不同土壤侵蚀强度面积所占百分比(%)
Table 1. Percentage of area with different soil erosion intensity from 2000 to 2019
年份
Year微度侵蚀
Slight erosion轻度侵蚀
Mild erosion中度侵蚀
Moderate erosion强烈侵蚀
Intense erosion极强烈侵蚀
Extreme erosion剧烈侵蚀
Violent erosion2000 80.21 17.80 1.44 0.32 0.17 0.06 2001 80.25 17.78 1.42 0.32 0.17 0.06 2002 80.39 17.66 1.41 0.31 0.17 0.06 2003 80.38 17.68 1.40 0.30 0.17 0.06 2004 80.23 17.79 1.43 0.32 0.17 0.06 2005 80.41 17.66 1.39 0.31 0.17 0.06 2006 80.41 17.66 1.39 0.31 0.17 0.06 2007 80.59 17.52 1.38 0.29 0.16 0.06 2008 79.61 18.24 1.53 0.36 0.20 0.07 2009 80.51 17.58 1.39 0.30 0.17 0.06 2010 80.46 17.62 1.40 0.30 0.17 0.06 2011 80.49 17.60 1.39 0.30 0.16 0.06 2012 80.63 17.48 1.38 0.29 0.16 0.06 2013 80.62 17.50 1.38 0.29 0.16 0.06 2014 80.64 17.48 1.38 0.29 0.16 0.06 2015 80.74 17.41 1.36 0.28 0.16 0.05 2016 80.72 17.42 1.36 0.28 0.16 0.05 2017 80.77 17.38 1.36 0.28 0.16 0.05 2018 80.76 17.39 1.36 0.28 0.16 0.05 2019 80.77 17.38 1.36 0.28 0.16 0.05 表 2 钱江源国家公园不同坡度范围面积及其百分比
Table 2. Areas and percentages of different slopes in Qianjiangyuan National Park
坡度分级
Slope classification面积(km2)
Area百分比(%)
Percentage0° ~ 5° 18.06 7.16 5° ~ 8° 10.5 4.17 8° ~ 15° 38.99 15.46 15° ~ 25° 79.75 31.62 25° ~ 35° 67.95 26.94 > 35° 36.96 14.65 -
[1] Kaiser J. Wounding Earth’s fragile skin[J]. Science, 2004, 304: 1616 − 1618. doi: 10.1126/science.304.5677.1616 [2] Brevik E C, Cerdà A, Mataix-Solera J, et al. The interdisciplinary nature of SOIL[J]. Soil, 2015, 1(1): 117 − 129. doi: 10.5194/soil-1-117-2015 [3] Montanarella L. Agricultural policy: govern our soils[J]. Nature, 2015, 528(7580): 32 − 33. doi: 10.1038/528032a [4] Keesstra S D, Bouma J, Wallinga J, et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals[J]. Soil, 2016, 2(2): 111 − 128. doi: 10.5194/soil-2-111-2016 [5] 赵其国, 骆永明. 论我国土壤保护宏观战略[J]. 中国科学院院刊, 2015, 30(4): 452 − 458. [6] 王占礼. 中国土壤侵蚀影响因素及其危害分析[J]. 农业工程学报, 2000, 16(4): 32 − 36. doi: 10.3321/j.issn:1002-6819.2000.04.009 [7] 郑粉莉, 王占礼, 杨勤科. 我国土壤侵蚀科学研究回顾和展望[J]. 自然杂志, 2008, 30(1): 12 − 16 + 63. doi: 10.3969/j.issn.0253-9608.2008.01.003 [8] Prosdocimi M, Cerdà A, Tarolli P. Soil water erosion on Mediterranean vineyards: A review[J]. Catena, 2016, 141: 1 − 21. doi: 10.1016/j.catena.2016.02.010 [9] Zhou W, Guo Z, Chen J, et al. Direct seeding for rice production increased soil erosion and phosphorus runoff losses in subtropical China[J]. Science of the Total Environment, 2019, 695: 133845. doi: 10.1016/j.scitotenv.2019.133845 [10] Wischmeier W H. A soil erodibility nomograph for farmland and construction sites[J]. Journal of Soil and Water Conservation, 1971, 26(5): 189 − 193. [11] Majhi A, Shaw R, Mallick K, et al. Towards improved USLE-based soil erosion modelling in India: A review of prevalent pitfalls and implementation of exemplar methods[J]. Earth-Science Reviews, 2021, 221: 103786. [12] 陈云明, 刘国彬, 郑粉莉, 等. RUSLE侵蚀模型的应用及进展[J]. 水土保持研究, 2004, 11(4): 80 − 83. doi: 10.3969/j.issn.1005-3409.2004.04.017 [13] Renard K G, Foster G R, Weesies G A, et al. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)[J]. Agricultural Handbook, 1997 [14] Elnashar A, Zeng H, Wu B, et al. Soil erosion assessment in the Blue Nile Basin driven by a novel RUSLE-GEE framework[J]. Science of The Total Environment, 2021, 793: 148466. doi: 10.1016/j.scitotenv.2021.148466 [15] Wang H, Zhao W, Li C, et al. Vegetation greening partly offsets the water erosion risk in China from 1999 to 2018[J]. Geoderma, 2021, 401: 115319. doi: 10.1016/j.geoderma.2021.115319 [16] Borrelli P, Robinson D A, Fleischer L R, et al. An assessment of the global impact of 21st century land use change on soil erosion[J]. Nature Communications, 2017, 8(1): 2013. doi: 10.1038/s41467-017-02142-7 [17] 章文波, 付金生. 不同类型雨量资料估算降雨侵蚀力[J]. 资源科学, 2003, 25(1): 35 − 41. doi: 10.3321/j.issn:1007-7588.2003.01.006 [18] 张科利, 彭文英, 杨红丽. 中国土壤可蚀性值及其估算[J]. 土壤学报, 2007, 44(1): 7 − 13. doi: 10.3321/j.issn:0564-3929.2007.01.002 [19] 张金池, 李海东, 林 杰, 等. 基于小流域尺度的土壤可蚀性K值空间变异[J]. 生态学报, 2008, 28(5): 2199 − 2206. doi: 10.3321/j.issn:1000-0933.2008.05.036 [20] 蔡崇法, 丁树文, 史志华, 等. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000, 14(2): 19 − 24. doi: 10.3321/j.issn:1009-2242.2000.02.005 [21] 中华人民共和国水利部. SL 190—2007土壤侵蚀分类分级标准[S]. 北京: 中国水利水电出版社, 2008: 3 − 12. [22] 虞 虎, 陈 田, 钟林生, 等. 钱江源国家公园体制试点区功能分区研究[J]. 资源科学, 2017, 39(1): 20 − 29. [23] 叶 铎, 钱海源, 王璐瑶, 等. 钱江源国家公园古田山常绿阔叶林木本植物的萌生更新特征[J]. 生态学报, 2018, 38(10): 3562 − 3568. [24] 梁石正雄, 方海燕. 2006 ~ 2015年钱塘江流域土壤侵蚀动态变化[J]. 中国水土保持科学(中英文), 2020, 18(6): 33 − 42. [25] 秦 伟, 朱清科, 张 岩. 基于GIS和RUSLE的黄土高原小流域土壤侵蚀评估[J]. 农业工程学报, 2009, 25(8): 157 − 163 + 4. doi: 10.3969/j.issn.1002-6819.2009.08.029 [26] 陈 峰, 李红波. 基于GIS和RUSLE的滇南山区土壤侵蚀时空演变−以云南省元阳县为例[J]. 应用生态学报, 2021, 32(2): 629 − 637. [27] 余建平, 伊晓霞, 余顺海, 等. 基于景观格局指数的钱江源国家公园生态系统完整性评价分析[J]. 浙江林业科技, 2020, 40(4): 30 − 36. doi: 10.3969/j.issn.1001-3776.2020.04.005 [28] 陈峥玲. 雪灾对武夷山脉中段常绿阔叶林群落结构及动态的影响[D]. 厦门: 厦门大学, 2018. [29] Oztas T, Fayetorbay F. Effect of freezing and thawing processes on soil aggregate stability[J]. Catena, 2003, 52(1): 1 − 8. doi: 10.1016/S0341-8162(02)00177-7 [30] Flerchinger G N, Sauer T J, Aiken R A. Effects of crop residue cover and architecture on heat and water transfer at the soil surface[J]. Geoderma, 2003, 116(1): 217 − 233. [31] 程 鹏, 张金池. 2008年重大冰雪灾害对安徽森林的影响与反思[J]. 南京林业大学学报(自然科学版), 2008, 32(3): 1 − 4. [32] 范昊明, 郭 萍, 武 敏, 等. 春季解冻期白浆土融雪侵蚀模拟研究[J]. 水土保持通报, 2011, 31(6): 130 − 133. [33] 李 杰, 李巍岳, 付 晶, 等. 基于近低空遥感技术的国家公园功能分区边界识别: 以钱江源国家公园体制试点区为例[J]. 生物多样性, 2019, 27(1): 42 − 50. doi: 10.17520/biods.2018249 [34] 阚欣玥, 张 洪. 低丘缓坡建设开发对土壤侵蚀的影响[J]. 山地学报, 2021, 39(1): 25 − 37. [35] 刘世梁, 张兆苓, 赵清贺, 等. 道路对景观格局和土壤侵蚀的影响−以云南省凤庆县为例[J]. 土壤通报, 2011, 42(1): 169 − 173. [36] 陆银梅, 李忠武, 聂小东, 等. 红壤缓坡地径流与土壤可蚀性对土壤有机碳流失的影响[J]. 农业工程学报, 2015, 31(19): 135 − 141. doi: 10.11975/j.issn.1002-6819.2015.19.019 [37] 戴佳栋, 张泽洪, 张建辉, 等. 干热河谷区耕作侵蚀作用下坡面水力侵蚀特性[J]. 水土保持学报, 2021, 35(1): 116 − 124 + 131. [38] Jia L, Zhao W, Zhai R, et al. Regional differences in the soil and water conservation efficiency of conservation tillage in China[J]. Catena, 2019, 175: 18 − 26. doi: 10.1016/j.catena.2018.12.012 [39] 吴承照, 杨浩楠, 张颖倩. 行为分析方法与国家公园功能分区模式−以云南大山包国家公园为例[J]. 环境保护, 2017, 45(14): 21 − 27. -