留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炭疽病发病草莓与健康草莓根际细菌群落结构及功能差异

王庆峰 周德平 褚长彬 赵峥 杨乾罡 吴淑杭

王庆峰, 周德平, 褚长彬, 赵 峥, 杨乾罡, 吴淑杭. 炭疽病发病草莓与健康草莓根际细菌群落结构及功能差异[J]. 土壤通报, 2022, 53(6): 1404 − 1412 doi: 10.19336/j.cnki.trtb.2021110906
引用本文: 王庆峰, 周德平, 褚长彬, 赵 峥, 杨乾罡, 吴淑杭. 炭疽病发病草莓与健康草莓根际细菌群落结构及功能差异[J]. 土壤通报, 2022, 53(6): 1404 − 1412 doi: 10.19336/j.cnki.trtb.2021110906
WANG Qing-feng, ZHOU De-ping, CHU Chang-bin, ZHAO Zheng, YANG Qian-gang, WU Shu-hang. Differences in Structure and Function of Rhizosphere Bacterial Communities between Anthracnose-infected and Healthy Strawberries[J]. Chinese Journal of Soil Science, 2022, 53(6): 1404 − 1412 doi: 10.19336/j.cnki.trtb.2021110906
Citation: WANG Qing-feng, ZHOU De-ping, CHU Chang-bin, ZHAO Zheng, YANG Qian-gang, WU Shu-hang. Differences in Structure and Function of Rhizosphere Bacterial Communities between Anthracnose-infected and Healthy Strawberries[J]. Chinese Journal of Soil Science, 2022, 53(6): 1404 − 1412 doi: 10.19336/j.cnki.trtb.2021110906

炭疽病发病草莓与健康草莓根际细菌群落结构及功能差异

doi: 10.19336/j.cnki.trtb.2021110906
基金项目: 上海市青年科技英才扬帆计划(20YF1442600)和上海市科委农业领域重点攻关项目(18391902600)资助
详细信息
    作者简介:

    王庆峰(1988−),男,山东临沂人,博士,助理研究员,环境微生物与农业生态。E-mail: wqfcool@126.com

    通讯作者:

    E-mail: zhoudeping@saas.sh.cn

    E-mail: wushuhang88@163.com

  • 中图分类号: S154.36

Differences in Structure and Function of Rhizosphere Bacterial Communities between Anthracnose-infected and Healthy Strawberries

  • 摘要:   目的   比较研究炭疽病不同发病程度草莓根际微生物群落结构并开展基因功能预测分析,为指导农田管理及筛选草莓炭疽病拮抗菌提供理论依据和参考。  方法  采集设施栽培大棚中健康和不同发病程度的草莓植株根际土壤,利用Illumina Miseq测序比较分析不同发病程度对草莓根际细菌多样性,根际细菌门、属水平群落组成特征的影响。  结果  发病植株根际细菌多样性显著低于健康植株,其中轻度发病草莓根际细菌丰富度ACE降低了7.2%,而中度发病草莓根际细菌丰富度降低了11%。草莓根际土壤的优势菌群为变形菌门、放线菌门和拟杆菌门,不同发病程度的草莓根际土壤的细菌群落结构发生了显著改变,其中发病草莓显著提高了根际土壤中芽孢菌属和亚栖热菌属的相对丰度,而降低了与促生功能相关的黄杆菌属和伯克氏菌属的相对丰度。PICRUSt2分析表明,炭疽病显著提高草莓根际细菌的细胞交流、细胞传递和分解,转录以及循环等功能,而降低了脂质代谢和消化功能。  结论  本研究表明炭疽病显著降低草莓根际细菌多样性,并改变细菌群落结构,降低了促进草莓营养吸收细菌种类的相对丰度,改变了根际细菌功能特征,研究结果为指导草莓生产管理和筛选抗病微生物提供参考。
  • 图  1  健康及不同发病程度草莓根际细菌组成(门水平)

    每组处理柱旁不同字母表示差异显著(P < 0.05, Tukey’s test)

    Figure  1.  Relative average abundances of bacteria in healthy and infected strawberries (at phylum level)

    图  2  健康及不同发病程度草莓根际细菌组成(属水平)

    每组处理柱上不同字母表示差异显著(P < 0.05, Tukey’s test)

    Figure  2.  Relative average abundances of bacteria in healthy and infected strawberry (at genus level)

    图  3  健康及不同发病程度草莓根际细菌PCoA分析(OTU水平)

    Figure  3.  Results of PCoA analysis based on weighted Fast UniFrac distance at OTU level

    图  4  不同发病程度草莓根际细菌功能变化分析 (一级功能层)

    Figure  4.  Changes of bacterial function profiles of different samples examined using changes of bacterial function profiles of different samples examined using PICRUSt2 (hierarchy level 1)

    图  5  不同发病程度草莓根际细菌功能变化分析 (二级功能层)

    Figure  5.  Changes of bacterial function profiles of different samples examined using Changes of bacterial function profiles of different samples examined using PIRCUSt2 (Hierarchy level 2)

    表  1  健康及不同发病程度草莓根际细菌多样性

    Table  1.   Effects of healthy and different infected stage strawberry on rhizosphere bacterial α diversity

    处理代号
    Code
    OTUsShannonACEChao1
    T0 4194 ± 276 a 6.92 ± 0.07 a 5492 ± 238 a 5502 ± 191 a
    T1 3842 ± 352 ab 6.74 ± 0.10 b 5092 ± 346 b 5109 ± 325 b
    T2 3639 ± 289 b 6.74 ± 0.08 b 4890 ± 335 b 4915 ± 367 b
      注:表中数据为平均值 ± 标准差,同列不同字母表示差异显著(P < 0.05)。T0健康草莓根际土壤,T1初始发病状态草莓根际土壤,T2发病中期草莓根际土壤。  
    下载: 导出CSV

    表  2  不同处理间细菌群落差异性分析

    Table  2.   The bacterial composition difference among different treatments under long-term fertilization

    组别
    Group
    差异性
    Difference
    系数
    Coefficient (R)
    显著性
    Significance (P)
    T0 vs T1 vs T2 0.6393 0.001
    T0 vs T1 0.5037 0.003
    T0 vs T2 0.6198 0.003
    T1 vs T2 0.5651 0.003
    下载: 导出CSV
  • [1] World Health Organization. The state of food security and nutrition in the world 2018: building climate resilience for food security and nutrition[M]. Food & Agriculture Org. , 2018.
    [2] 韩永超, 曾祥国, 向发云, 等. 草莓属植物种质资源对炭疽病抗性的离体评价[J]. 中国农业科学, 2019, (20): 3585 − 3594.
    [3] 赵玳琳, 何海永, 吴石平, 等. 棘孢木霉GYSW-6m1对草莓炭疽病的生防机制及其防病促生作用研究[J]. 中国生物防治学报, 2020, (4): 587 − 595.
    [4] Wang Q F, Jiang X, Guan D W, et al. Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols[J]. Applied Soil Ecology, 2018, 125: 88 − 96. doi: 10.1016/j.apsoil.2017.12.007
    [5] 董利苹, 曹 靖, 李先婷, 等. 不同耐盐植物根际土壤盐分的动态变化[J]. 生态学报, 2011, 31: 2813 − 2821.
    [6] Yuan J, Zhao J, Wen T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome, 2018, 6: 1 − 12. doi: 10.1186/s40168-017-0383-2
    [7] Wang Q F, Ma M C, Jiang X, et al. Impact of 36 years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in northeast China[J]. Applied Soil Ecology, 2019, 136: 148 − 157. doi: 10.1016/j.apsoil.2018.12.019
    [8] Berendsen R L, Pieterse C M, Bakker P A. The rhizosphere microbiome and plant health[J]. Trends in plant science, 2012, 17: 478 − 486. doi: 10.1016/j.tplants.2012.04.001
    [9] Li C, Tian Q, Rahman M K, et al. Effect of anti-fungal compound phytosphingosine in wheat root exudates on the rhizosphere soil microbial community of watermelon[J]. Plant and Soil, 2020, 456: 223 − 240. doi: 10.1007/s11104-020-04702-1
    [10] Rudrappa T, Czymmek K J, Paré P W, et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant physiology, 2008, 148: 1547 − 1556. doi: 10.1104/pp.108.127613
    [11] 吴 祥, 吉沐祥, 陈宏州, 等. 句容地区草莓炭疽病病原菌的鉴定及防治药剂筛选[J]. 江苏农业学报, 2013, (6): 1510 − 1513.
    [12] 韩国兴, 礼 茜, 孙飞洲, 等. 杭州地区草莓炭疽病病原鉴定及其对多菌灵和乙霉威的抗药性[J]. 浙江农业科学, 2009, 6: 1169 − 1172. doi: 10.3969/j.issn.0528-9017.2009.06.046
    [13] 谷春艳, 王学峰, 苏贤岩, 等. 解淀粉芽孢杆菌WH1G与氟啶胺协同防治草莓灰霉病[J]. 农药, 2017, (12): 932 − 936.
    [14] Han Y C, Zeng X G, Xiang F Y, et al. Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China[J]. Journal of Integrative Agriculture, 2018, 17: 1391 − 1400. doi: 10.1016/S2095-3119(17)61854-9
    [15] Nannipieri P, Ascher J, Ceccherini M, et al. Microbial diversity and soil functions[J]. European journal of soil science, 2003, 54: 655 − 670. doi: 10.1046/j.1351-0754.2003.0556.x
    [16] Langille M G, Zaneveld J, Caporaso J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature biotechnology, 2013, 31: 814 − 821. doi: 10.1038/nbt.2676
    [17] Wu Z, Hao Z, Sun Y, et al. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng[J]. Applied Soil Ecology, 2016, 107: 99 − 107. doi: 10.1016/j.apsoil.2016.05.017
    [18] 肖 蓉, 曹秋芬, 聂园军, 等. 基于高通量测序患炭疽病草莓根际与健康草莓根际细菌群落的比较研究[J]. 中国农学通报, 2017, (11): 14 − 20.
    [19] Cheng W, Johnson D W, Fu S. Rhizosphere effects on decomposition: controls of plant species, phenology, and fertilization[J]. Soil Science Society of America Journal, 2003, 67: 1418 − 1427. doi: 10.2136/sssaj2003.1418
    [20] Ai C, Liang G, Sun J, et al. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil[J]. Soil Biology and Biochemistry, 2013, 57: 30 − 42. doi: 10.1016/j.soilbio.2012.08.003
    [21] Zhou J, Jiang X, Zhou B K, et al. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China[J]. Soil Biology & Biochemistry, 2016, 95: 135 − 143.
    [22] Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7: 335 − 336. doi: 10.1038/nmeth.f.303
    [23] Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27: 2194 − 2200. doi: 10.1093/bioinformatics/btr381
    [24] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature methods, 2013, 10: 996 − 998. doi: 10.1038/nmeth.2604
    [25] Schloter M, Nannipieri P, Sørensen S J, et al. Microbial indicators for soil quality[J]. Biology and Fertility of Soils, 2018, 54: 1 − 10. doi: 10.1007/s00374-017-1248-3
    [26] 邓 晓, 李勤奋, 武春媛, 等. 健康香蕉(Musa paradisiaca)植株与枯萎病患病植株根区土壤细菌多样性的比较研究[J]. 生态环境学报, 2015, (3): 402 − 408.
    [27] Gorissen A, van Overbeek L, van Elsas J. Pig slurry reduces the survival of Ralstonia solanacearum biovar 2 in soil[J]. Canadian Journal of Microbiology, 2004, 50: 587 − 593. doi: 10.1139/w04-042
    [28] Qiu M, Zhang R, Xue C, et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils, 2012, 48: 807 − 816. doi: 10.1007/s00374-012-0675-4
    [29] Berdy J. Bioactive microbial metabolites[J]. The Journal of antibiotics, 2005, 58: 1 − 26. doi: 10.1038/ja.2005.1
    [30] Lee S M, Kong H G, Song G C, et al. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease[J]. The ISME Journal, 2021, 15: 330 − 347. doi: 10.1038/s41396-020-00785-x
    [31] Xun W, Zhao J, Xue C, et al. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China[J]. Environmental microbiology, 2016, 18: 1907 − 1917. doi: 10.1111/1462-2920.13098
    [32] Dai H, Zang H, Zhao Y, et al. Linking bacterial community to aggregate fractions with organic amendments in a sandy soil[J]. Land Degradation & Development, 2019, 30: 1828 − 1839.
    [33] Xu P, Liu Y, Zhu J, et al. Influence mechanisms of long-term fertilizations on the mineralization of organic matter in Ultisol[J]. Soil and Tillage Research, 2020, 201: 104594. doi: 10.1016/j.still.2020.104594
    [34] Li N, Li X, Zhang H J, et al. Microbial community and antibiotic resistance genes of biofilm on pipes and their interactions in domestic hot water system[J]. Science of The Total Environment, 2021, 767: 144364. doi: 10.1016/j.scitotenv.2020.144364
    [35] Huang X, Zhou X, Zhang J, et al. Highly connected taxa located in the microbial network are prevalent in the rhizosphere soil of healthy plant[J]. Biology and Fertility of Soils, 2019, 55: 299 − 312. doi: 10.1007/s00374-019-01350-1
    [36] Stringlis I A, Yu K, Feussner K, et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health[J]. Proceedings of the National Academy of Sciences, 2018, 115: E5213 − E5222.
    [37] Liu Y, Zhang N, Qiu M, et al. Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection[J]. FEMS microbiology letters, 2014, 353: 49 − 56. doi: 10.1111/1574-6968.12406
    [38] Menon R R, Kumari S, Viver T, et al. Flavobacterium pokkalii sp. nov., a novel plant growth promoting native rhizobacteria isolated from pokkali rice grown in coastal saline affected agricultural regions of southern India, Kerala[J]. Microbiological Research, 2020, 240: 126533. doi: 10.1016/j.micres.2020.126533
    [39] Wang C, Huang Y, Yang X, et al. Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium[J]. Chemosphere, 2020, 252: 126603. doi: 10.1016/j.chemosphere.2020.126603
    [40] You M, Fang S, Macdonald J, et al. Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth[J]. Microbiological Research, 2020, 233: 126395. doi: 10.1016/j.micres.2019.126395
    [41] Liu D, Keiblinger K M, Schindlbacher A, et al. Microbial functionality as affected by experimental warming of a temperate mountain forest soil—A metaproteomics survey[J]. Applied Soil Ecology, 2017, 117: 196 − 202.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  36
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-21
  • 录用日期:  2022-04-20
  • 修回日期:  2022-04-08
  • 刊出日期:  2022-12-06

目录

    /

    返回文章
    返回