留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同产地油菜秸秆制备的生物质炭对红壤酸度和土壤pH缓冲容量的影响

黄清扬 徐仁扣 俞元春

黄清扬, 徐仁扣, 俞元春. 不同产地油菜秸秆制备的生物质炭对红壤酸度和土壤pH缓冲容量的影响[J]. 土壤通报, 2022, 53(4): 821 − 827 doi: 10.19336/j.cnki.trtb.2021111101
引用本文: 黄清扬, 徐仁扣, 俞元春. 不同产地油菜秸秆制备的生物质炭对红壤酸度和土壤pH缓冲容量的影响[J]. 土壤通报, 2022, 53(4): 821 − 827 doi: 10.19336/j.cnki.trtb.2021111101
HUANG Qing-yang, XU Ren-kou, YU Yun-chun. Effects of Biochars of Canola Straws from Different Soils on Red Soil Acidity and pH Buffering Capacity[J]. Chinese Journal of Soil Science, 2022, 53(4): 821 − 827 doi: 10.19336/j.cnki.trtb.2021111101
Citation: HUANG Qing-yang, XU Ren-kou, YU Yun-chun. Effects of Biochars of Canola Straws from Different Soils on Red Soil Acidity and pH Buffering Capacity[J]. Chinese Journal of Soil Science, 2022, 53(4): 821 − 827 doi: 10.19336/j.cnki.trtb.2021111101

不同产地油菜秸秆制备的生物质炭对红壤酸度和土壤pH缓冲容量的影响

doi: 10.19336/j.cnki.trtb.2021111101
基金项目: 国家自然科学基金资助(U19A2046)和江苏高校优势学科建设工程资助项目(PAPD)资助
详细信息
    作者简介:

    黄清扬,硕士研究生,主要从事土壤环境化学研究。E-mail: 491940618@qq.com

    通讯作者:

    E-mail: rkxu@issas.ac.cn

    E-mail: ycyu@njfu.edu.cn

  • 中图分类号: S153

Effects of Biochars of Canola Straws from Different Soils on Red Soil Acidity and pH Buffering Capacity

  • 摘要:   目的  明确不同产地油菜秸秆制备的生物质炭对红壤酸度的改良和土壤pH缓冲容量的提升效果。  方法  将不同添加量的油菜秸秆炭分别与两种酸性红壤混合,然后进行室内培养试验,测定培养实验前后土壤pH、pH缓冲容量、土壤交换性盐基离子和土壤交换性酸。  结果  添加油菜秸秆炭显著提高了土壤的pH、pH缓冲容量、交换性盐基离子含量,显著降低了土壤交换性酸含量。说明添加油菜秸秆炭不仅可以改良红壤酸度,还能提高红壤的抗酸化能力,因而可以减缓土壤的复酸化。生长在碱性土壤上的油菜秸秆制备的生物质炭对红壤酸度的改良效果和对土壤pH缓冲容量的提升效果均优于生长在酸性土壤上的油菜秸秆制备的生物质炭,在5%添加水平下,前者使湖南红壤pH相比对照提高37.4%,后者使该土壤的pH提高22.4%;相应地,2种生物质炭分别使该土壤的pH缓冲容量分别提高41.4%和37.3%。2种油菜秸秆炭对红壤pH和pH缓冲容量的提升效果与其碱含量和表面官能团多少相一致。  结论  碱性土壤上生长的油菜秸秆制备的生物质炭对红壤具有更好的改良效果。
  • 图  1  不同产地及不同添加量油菜秸秆生物质炭对2种红壤pH的影响

    不同小写字母表示同一秸秆生物炭不同处理间差异显著(P < 0.05)

    Figure  1.  Effects of different application rates of canola straw biochars from different producing locations on the pH values of 2 red soils

    图  2  不同产地及不同添加量油菜秸秆生物质炭对2种红壤交换性盐基离子的影响

    不同小写字母表示同一秸秆生物炭不同处理间差异显著(P<0.05)

    Figure  2.  Effects of different application rates of canola straw biochars from different producing locations on the exchangeable base cations of 2 red soils

    图  3  不同产地及不同添加量油菜秸秆生物质炭对2种红壤交换性酸的影响

    不同小写字母表示同一秸秆生物炭不同处理间差异显著(P < 0.05)

    Figure  3.  Effects of different application rates of canola straw biochars from different producing locations on the exchangeable acidities of 2 red soils

    图  4  不同产地及不同添加量油菜秸秆生物质炭对2种红壤pHBC的影响

    不同小写字母表示同一秸秆生物炭不同处理间差异显著(P < 0.05)

    Figure  4.  Effects of different application rates of canola straw biochars from different producing locations on the pH buffering capacity of 2 red soils

    图  5  油菜秸秆生物质炭改良土壤有机质含量(上)和有效阳离子交换量(下)与土壤pH缓冲容量的相关性

    Figure  5.  Relationships of organic matter (above) and effective cation exchange capacity (down) of canola straw biochar-ameliorated soils with soil pH buffer capacity

    表  1  不同产地及不同添加量油菜秸秆生物质炭对红壤ECEC和有机质含量的影响

    Table  1.   Effects of different application rates of canola straw biochars from different producing locations on the ECEC and organic matter of 2 red soils

    土壤
    Soil
    处理
    Treatment
    ECEC
    (cmolc kg−1)
    有机质(g kg−1)
    Organis matter
    湖南祁阳红壤 CK 7.14 ± 0.14 f 9.20 ± 0.19 e
    1%HBC 7.73 ± 0.12 e 19.83 ± 1.14 d
    3%HBC 11.67 ± 0.48 c 40.48 ± 0.65 c
    5%HBC 15.25 ± 0.01 a 53.58 ± 0.65 a
    1%XBC 8.10 ± 0.23 e 19.46 ± 1.75 d
    3%XBC 10.96 ± 0.42 d 41.79 ± 1.96 c
    5%XBC 13.15 ± 0.26 b 48.34 ± 0.65 b
    安徽郎溪红壤 CK 7.63 ± 0.11 d 14.23 ± 2.61 e
    1%HBC 8.18 ± 0.11 d 27.33 ± 0.75 d
    3%HBC 11.61 ± 0.55 c 48.99 ± 1.31 c
    5%HBC 14.36 ± 1.32 a 64.05 ± 4.58 a
    1%XBC 8.10 ± 0.02 d 25.38 ± 1.26 d
    3%XBC 11.10 ± 0.09 c 47.03 ± 0.65 c
    5%XBC 13.00 ± 0.06 b 58.16 ± 1.31 b
    下载: 导出CSV
  • [1] 于天仁. 中国土壤的酸度特点和酸化问题[J]. 土壤通报, 1988, 19(2): 49 − 51.
    [2] 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238 − 244.
    [3] 徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊, 2018, 33(2): 160 − 167.
    [4] 殷会德. 石岩. 改良剂对土壤酸化修复研究与展望[J]. 耕作与栽培, 2016, (6): 68 − 72.
    [5] Cai Z J, Wang B R, Zhang L, et al. Striking a balance between N sources: Mitigating soil acidification and accumulation of phosphorous and heavy metals from manure[J]. Science of The Total Environment, 2021, 754: 142189. doi: 10.1016/j.scitotenv.2020.142189
    [6] 宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力[J]. 植物营养与肥料学报, 2018, 24(1): 1 − 21. doi: 10.11674/zwyf.17348
    [7] 徐仁扣. 2016. 秸秆生物质炭对红壤酸度的改良作用: 回顾与展望[J]. 农业资源与环境学报, 2016, 33(4): 303 − 309.
    [8] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488 − 3497. doi: 10.1016/j.biortech.2010.11.018
    [9] Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol[J]. Soil Use and Management, 2011, 27(1): 110 − 115. doi: 10.1111/j.1475-2743.2010.00317.x
    [10] Yuan J H, Xu R K. Effects of biochars generated from crop residues on chemical properties of acid soils from tropical and subtropical China[J]. Soil Research, 2012, 50(7): 570 − 578. doi: 10.1071/SR12118
    [11] 董 颖, 邵 捷, 徐仁扣, 等. 不同地区油菜秸秆制备的生物质炭对酸性红壤的改良效果[J]. 土壤, 2020, 52(1): 134 − 138.
    [12] Wang H, Dong Y, Tong X J, et al. The amelioration effects of canola straw biochar on Ultisol acidity varied with the soil in which the feedstock crop was cultivated[J]. Journal of Soils and Sediments, 2020, 20(3): 1424 − 1434. doi: 10.1007/s11368-019-02504-2
    [13] 鲁如坤. 土壤农业化学分析方法[M]. 中国农业科技出版社, 2000.
    [14] 姜 军, 徐仁扣, 赵安珍. 用酸碱滴定法测定酸性红壤的pH缓冲容量[J]. 土壤通报, 2006, 37(6): 1247 − 1248. doi: 10.3321/j.issn:0564-3945.2006.06.045
    [15] 于天仁, 季国亮, 丁昌璞, 等. 可变电荷土壤的电化学[M]. 科学出版社, 1996.
    [16] 沈仁芳. 铝在土壤-植物系统中的行为及植物的适应机制[M]. 科学出版社, 2008.
    [17] Shi R Y, Liu Z D, Li Y, et al. Mechanisms for increasing soil resistance to acidification by long-term manure application[J]. Soil and Tillage Research, 2019, 185: 77 − 84. doi: 10.1016/j.still.2018.09.004
    [18] Shi R Y, Hong Z N, Li J Y, et al. Mechanisms for increasing the pH buffering capacity of an acidic Ultisol by crop straw derived biochars[J]. Journal of Agricultural and Food Chemistry, 2017, 65: 8111 − 8119. doi: 10.1021/acs.jafc.7b02266
    [19] Miguel A T, Carbonell-Bojollo RM, Moreno-García M, et al. Soil organic matter and nutrient improvement through cover crops in a Mediterranean olive orchard[J]. Soil & Tillage Research, 2021, 210: 104977.
    [20] 袁国栋, 龚子同. 可变电荷土壤的有效阳离子交换量及其在分类上的应用[J]. 土壤, 1992, (1): 36 − 40.
    [21] Aitken R L. Relatioships between extractable Al, selected soil properties, pH buffer capacity and lime requirement in some acidic Queensland soils[J]. Australian Journal of Soil Research, 1992, 30(2): 119 − 130. doi: 10.1071/SR9920119
    [22] Nelson P N, Su N H. Soil pH buffering capacity: a descriptive function and its application to some acidic tropical soils[J]. Australian Journal of Soil Research, 2010, 48(3): 210 − 207.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  3
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-21
  • 录用日期:  2022-04-01
  • 修回日期:  2021-12-03
  • 刊出日期:  2022-06-17

目录

    /

    返回文章
    返回