Damage Characteristics of Soil Properties in Different Land Use Types under Mining Subsidence Areas in Loess Hilly Area
-
摘要:
目的 探究半干旱榆神府矿区采煤塌陷地不同土地利用类型地表土壤损害程度和机理。 方法 选择榆神府矿区黄土沟壑地貌下林地、耕地、园地和草地4种不同土地利用类型,分析地表塌陷前后土壤物理、化学和生物学性质的变化特征,通过主成分分析和排序探讨采煤塌陷对不同土地利用类型土壤性质的影响。 结果 4种土地利用类型地表塌陷1 ~ 2年内土壤性质均朝着水分、养分减小的方向发展,但不同土地利用类型塌陷地土壤损害特征具有明显差异,其中草地的土壤机械组成和养分含量、林地的速效养分特征、园地的砂粒含量各自变化较显著;土壤机械组成、有机质和水分含量是影响榆神府矿区土壤质量变化的关键因子;在矿区损害地土壤系统修复过程中,除必要的塌陷地充填外,草地还需采取人工施肥、补水和微地形改造等措施,林地还需施加氮磷肥辅以相应的微生物菌剂,园地和耕地损害较小可减小人工干预。 结论 半干旱或干旱区煤炭开采塌陷地在生态修复过程中,针对不同土地利用类型土壤损害程度与成因采取对应的恢复措施,有利于矿区生态环境高效和高质量恢复。 Abstract:Objective The degree and mechanism of surface soil damage under different land use types need to be explored in the semi-arid Yulin-Shenmu-Fugu mining subsidence area. Method Four different land use types, including forest land, cultivated land, orchard land and grassland, were selected in Yulin-Shenmu-Fugu mining area at loess gully landform. The change characteristics of soil physical, chemical and biological properties before and after surface collapse were analyzed, and the influence of coal mining subsidence on soil properties of different land use types was discussed by principal component analysis and sorting. Results Within 1-2 years after the surface subsidence of four land use types, the soil properties all developed towards the direction of decreasing water and nutrients. However, there were obvious differences in soil damage characteristics among different land use types. The soil particle composition and nutrient content of grassland, available nutrient characteristics of forestland, and sand particle content of orchard land changed significantly in their own respectively. Soil mechanical composition, organic matter and water content were the key factors affecting soil quality changes in the Yulin-Shenmu-Fugu mining area. In the process of soil system restoration of damaged land in mining area, in addition to the necessary filling of the collapsed land, measures such as artificial fertilization, irrigation and micro-topographic reconstruction should also be adopted for grassland, and forestland soil should be mainly applied with nitrogen and phosphate fertilizer supplemented by corresponding microbial agents. The less damaged orchard land and cultivated land could reduce manual intervention. Conclusion In the process of ecological restoration in coal mining subsidence areas in semi-arid or arid areas, according to the degree and causes of soil damage of different land use types, taking corresponding restoration measures is beneficial to the efficient and high-quality restoration of the ecological environment of mining areas. -
表 1 研究样地基本情况
Table 1. Basic information of sample plots
样地类型
Sample type所处井田
The field海拔(m)
Elevation坡度
Gradient坡向
Slope aspect主要建群物种
Major constructive species林地 麻黄梁、榆家梁、红柳林、柠条塔 1100 ~ 1300 10° ~ 30° 南坡 柠条(Caragana korshinskii)、沙棘(Hippophae rhamnoid) 耕地 麻黄梁、榆家梁、凉水井、柠条塔 1200 ~ 1260 7° ~ 20° 南坡 玉米(Zea mays) 园地 麻黄梁、榆家梁、凉水井 1100 ~ 1300 10° ~ 25° 南坡 山杏(Amrmeniaca sibirica) 草地 麻黄梁、榆家梁、红柳林、柠条塔 1100 ~ 1350 10° ~ 30° 南坡 长芒草(Stipa bungeana)、黑沙蒿(Artemisia ordosica) 表 2 不同土地利用类型地表塌陷前后土壤容重及pH变化特征
Table 2. Changes of soil bulk density and pH before and after surface subsidence under different land use types
土地利用类型
Land use type土壤容重(g cm−3)
Soil bulk density土壤pH
Soil pH塌陷地
Subsidence area未塌陷地
Non-subsidence area塌陷地
Subsidence area未塌陷地
Non-subsidence area林地 1.19 ± 0.05 a 1.32 ± 0.03 d 8.41 ± 0.09 a 8.49 ± 0.07 a 耕地 1.14 ± 0.01 f 1.13 ± 0.04 f 8.38 ± 0.09 a 8.37 ± 0.18 a 园地 1.34 ± 0.05 d 1.43 ± 0.04 c 8.41 ± 0.03 a 8.36 ± 0.23 a 草地 1.29 ± 0.02 d 1.59 ± 0.05 b 8.48 ± 0.09 a 8.41 ± 0.09 a 注:不同小写字母表示同一测定指标下,不同土地利用类型和塌陷前后土壤差异显著(P < 0.05);下同。 表 3 不同土地利用类型地表塌陷前后土壤养分变化特征
Table 3. Characteristics of soil nutrients before and after surface subsidence under different land use types
土地利用类型
Land use type地表状态
Surface state有机质(g kg−1)
Organic matter总氮(mg kg−1)
Total nitrogen总磷(mg kg−1)
Total phosphorus速效磷(mg kg−1)
Available phosphorus速效氮(mg kg−1)
Available nitrogen速效钾(mg kg−1)
Available potassium林地 塌陷地 1.61 ± 0.40 bcd 0.24 ± 0.08 a 0.31 ± 0.14 b 0.61 ± 0.27 b 53.58 ± 35.29 a 137.14 ± 16.87 a 未塌陷地 2.23 ± 0.14 ab 0.27 ± 0.07 a 0.48 ± 0.24 b 0.93 ± 0.48 b 41.57 ± 15.87 a 159.34 ± 30.15 a 耕地 塌陷地 0.96 ± 0.47 d 0.26 ± 0.10 a 0.63 ± 0.41 b 1.24 ± 0.79 b 47.97 ± 15.11 a 155.50 ± 37.22 a 未塌陷地 1.33 ± 0.29 cd 0.33 ± 0.16 a 1.40 ± 0.71 a 3.78 ± 3.14 a 50.37 ± 26.80 a 147.44 ± 67.72 a 园地 塌陷地 2.43 ± 0.15 ab 0.27 ± 0.17 a 0.52 ± 0.27 b 1.03 ± 0.53 b 36.63 ± 23.97 a 190.93 ± 12.61 a 未塌陷地 2.50 ± 0.78 a 0.32 ± 0.16 a 0.44 ± 0.38 b 0.86 ± 0.74 b 50.18 ± 22.13 a 165.85 ± 41.78 a 草地 塌陷地 2.40 ± 0.36 ab 0.23 ± 0.06 a 0.44 ± 0.16 b 0.87 ± 0.32 b 37.88 ± 10.83 a 122.44 ± 17.59 a 未塌陷地 2.01 ± 0.31 abc 0.30 ± 0.10 a 0.46 ± 0.20 b 0.90 ± 0.39 b 44.69 ± 25.73 a 160.71 ± 18.60 a -
[1] 史沛丽, 张玉秀, 胡振琪, 等. 采煤塌陷对中国西部风沙区土壤质量的影响机制及修复措施[J]. 中国科学院大学学报, 2017, 34(3): 318 − 328. doi: 10.7523/j.issn.2095-6134.2017.03.006 [2] 黄 飞, 黄 滚, 杨 涛, 等. 龙滩矿井采煤工作面诱发开采沉陷的动态变化特征[J]. 矿业安全与环保, 2019, 46(2): 103 − 106,110. doi: 10.3969/j.issn.1008-4495.2019.02.023 [3] Yang Y Y, Xu Y S, Shen S L, et al. Mining-induced geo-hazards with environmental protection measures in Yunnan, China: an overview[J]. Bulletin of Engineering Geology & the Environment, 2015, 74(1): 141 − 150. [4] 蔡利平, 李 钢, 孙久运, 等. 采煤塌陷区土地复垦适宜性评价单元划分研究[J]. 中国煤炭, 2011, 37(12): 104 − 108. doi: 10.3969/j.issn.1006-530X.2011.12.028 [5] 曹志平. 土壤生态学[M]. 北京: 化学工业出版社, 2007. [6] 王 琦, 全占军, 韩 煜, 等. 采煤塌陷对风沙区土壤性质的影响[J]. 中国水土保持科学, 2013, 11(6): 110 − 118. [7] 臧荫桐, 汪 季, 丁国栋, 等. 采煤沉陷后风沙土理化性质变化及其评价研究[J]. 土壤学报, 2010, 47(2): 262 − 269. doi: 10.11766/trxb2010470209 [8] P D D Q, K Z, A D R, et al. Coal mining practices reduce the microbial biomass, richness and diversity of soil[J]. Applied Soil Ecology, 2016, 98: 195 − 203. doi: 10.1016/j.apsoil.2015.10.016 [9] 张发旺, 侯新伟, 韩占涛, 等. 采煤塌陷对土壤质量的影响效应及保护技术[J]. 地理与地理信息科学, 2003, 19(3): 67 − 70. doi: 10.3969/j.issn.1672-0504.2003.03.018 [10] 范书凯, 徐华山, 赵同谦. 煤矿沉陷区土壤酶活性研究−以林地为例[J]. 能源环境保护, 2007, 21(6): 20 − 24. doi: 10.3969/j.issn.1006-8759.2007.06.006 [11] 栗 丽, 王曰鑫, 王卫斌. 采煤塌陷对黄土丘陵区坡耕地土壤理化性质的影响[J]. 土壤通报, 2010, 41(5): 1237 − 1240. [12] 胡振琪, 龙精华, 王新静. 论煤矿区生态环境的自修复、自然修复和人工修复[J]. 煤炭学报, 2014, 39(8): 1751 − 1757. [13] 王双明, 申艳军, 孙 强, 等. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J]. 采矿与岩层控制工程学报, 2020, 2(4): 5 − 19. [14] 尚浩博. 资源环境常规分析方法[M]. 杨凌: 西北农林科技大学出版社, 2010. [15] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. [16] Di Bella J M, Bao Y, Gloor G B, et al. High throughput sequencing methods and analysis for microbiome research[J]. Journal of Microbiological Methods, 2013, 95(3): 401 − 414. doi: 10.1016/j.mimet.2013.08.011 [17] Smilauer P, Lep J. Multivariate analysis of ecological data using CANOCO [J], 2014. [18] Ma K, Zhang Y X, Ruan M Y, et al. Land Subsidence in a Coal Mining Area Reduced Soil Fertility and Led to Soil Degradation in Arid and Semi-Arid Regions[J]. International Journal of Environmental Research and Public Health, 2019, 16(20): 3929. doi: 10.3390/ijerph16203929 [19] Yang D J, Bian Z F, Lei S G. Impact on soil physical qualities by the subsidence of coal mining: a case study in Western China[J]. Environmental Earth ences, 2016, 75(8): 1 − 14. [20] 孟红旗, 熊仁鹏, 王 崇, 等. 采煤沉陷区不同土地利用类型土壤水分、有机质和质地的空间变异性[J]. 土壤学报, 2018, 55(4): 911 − 922. doi: 10.11766/trxb201711090497 [21] 濮阳雪华, 苟清平, 王春春, 等. 陕北黄土区不同微地形土壤养分特征研究[J]. 西北林学院学报, 2019, 34(3): 37 − 42,73. doi: 10.3969/j.issn.1001-7461.2019.03.06 [22] 卓丽霞. 陕西不同生态区土壤细菌及固氮微生物多样性分析[D]. 西安: 西北大学, 2017. [23] 杜华栋, 赵晓光, 张 勇, 等. 榆神府覆沙矿区采煤塌陷地表层土壤理化性质演变[J]. 土壤, 2017, 49(4): 770 − 775. [24] 王志泰, 李 毅, 王志杰. 岩石边坡植被建植初期植被特征与土壤养分动态[J]. 农业工程学报, 2012, 28(2): 215 − 221. doi: 10.3969/j.issn.1002-6819.2012.02.037 [25] Jiao F, Wen Z M, An S S. Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China[J]. Catena, 2011, 86(2): 110 − 116. doi: 10.1016/j.catena.2011.03.001 [26] Pei S, F Hua, Wan C. Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China[J]. Agriculture Ecosystems & Environment, 2008, 124(1): 33 − 39. [27] 曹祎晨. 黄土采煤塌陷地不同土地利用类型土壤性质损害特征[D]. 西安: 西安科技大学, 2021. [28] 周哲哲, 张 磊, 王甲辰, 等. 种植年限对京郊温室土壤生态环境的影响[J]. 土壤通报, 2021, 52(1): 177 − 184. [29] 杜华栋, 曹祎晨, 聂文杰, 等. 黄土沟壑区采煤塌陷地人工与自然植被恢复下土壤性质演变特征[J]. 煤炭学报, 2021, 46(5): 1641 − 1649. [30] Xu Z J, Zhang Y, Yang J, et al. Effect of Underground Coal Mining on the Regional Soil Organic Carbon Pool in Farmland in a Mining Subsidence Area[J]. Sustainability, 2019, 11(18): 4961. doi: 10.3390/su11184961 [31] Sun S, Sun H, Zhang D, et al. Response of Soil Microbes to Vegetation Restoration in Coal Mining Subsidence Areas at Huaibei Coal Mine, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(10): 1757. doi: 10.3390/ijerph16101757 [32] 杨文娜, 余 泺, 罗东海, 等. 化肥和有机肥配施生物炭对土壤磷酸酶活性和微生物群落的影响[J]. 环境科学, 2022, 43(1): 540 − 549. [33] 宋海燕, 李传荣, 许景伟, 等. 滨海盐碱地枣园土壤酶活性与土壤养分、微生物的关系[J]. 林业科学, 2007, 43(S1): 28 − 32. [34] 彭苏萍, 毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报, 2020, 45(4): 1211 − 1221. [35] 白中科, 周 伟, 王金满, 等. 再论矿区生态系统恢复重建[J]. 中国土地科学, 2018, 32(11): 1 − 9. [36] 李鹏飞, 张兴昌, 郝明德, 等. 植被恢复对黄土高原矿区重构土壤理化性质、酶活性以及真菌群落的影响[J]. 水土保持通报, 2019, 39(5): 1 − 7. -