Forms and Distribution Characteristics of Inorganic Sulfur in Soils of Dongping Lake Wetland
-
摘要:
目的 了解东平湖湿地土壤不同形态无机硫含量水平与分布特征。 方法 采集东平湖湿地表层土壤样品(0 ~ 5 cm)和不同植被区(芦苇区、菹草区、植被混生区和对照区)土壤柱样(0 ~ 10 cm),分析样品中总无机硫(TIS)及其各形态(水溶性硫、吸附性硫、盐酸溶解性硫及盐酸挥发性硫)的含量,探讨了不同形态无机硫含量的时空分布特征及其影响因子。 结果 东平湖湿地表层土壤总无机硫含量范围为31.26 ~ 117.36 mg kg−1,均值为75.85 mg kg−1;各形态的平均含量占比为水溶性硫(43.49%)> 盐酸溶解性硫(27.37%)> 吸附性硫(26.78%)> 盐酸挥发性硫(2.36%);其含量的空间分布总体表现为湖区码头附近显著升高,大汶河入湖口较低。柱状土壤总无机硫、水溶性硫、吸附性硫与盐酸溶解性硫含量总体表现为夏季和芦苇区最高,且随土层深度的增加逐渐降低;菹草区总无机硫、吸附性硫、盐酸溶解性硫由于受季节与植被区的交互作用影响而无显著季节变化。表层土壤和柱状土壤不同形态无机硫含量间存在一定的正相关关系,且与有机质多呈显著正相关;柱状土壤中各形态无机硫含量(除盐酸挥发性硫外)与pH显著正相关,而与Eh显著负相关。 结论 东平湖湿地土壤不同形态无机硫的时空分布主要受到人类活动、植被分布和水动力条件的影响,且土壤有机质、温度、pH和Eh为其关键影响因子。 Abstract:Objective The aim is to understand the speciation content and distribution characteristics of inorganic sulfur (S) in Dongping Lake Wetland. Method Twenty soil surface samples (0 - 5 cm) were collected around Dongping Lake, and soil column samples (0 - 10 cm) were also collected in different seasons from vegetable areas (reed area, Potamogeton crispus area, mixed vegetation area and control area with no vegetation). The contents of inorganic S in different forms which according to the order of extraction are H2O-S (HS), Adsorbed-S (AS), HCl-Soluble-S (HSS) and HCl-Volatile-S (HVS) were analyzed. Furthermore, the spatial distribution characteristics and its influencing factors were discussed. Result The results showed that the content of total inorganic S (TIS) in the surface soils of Dongping Lake Wetland ranged from 31.26 mg kg−1 to 117.36 mg kg−1 with the mean value of 75.85 mg kg−1, and the average proportions of the inorganic S speciation contents were in the order of HS (43.49%) > HSS (27.37%) > AS (26.78%) > HVS (2.36%). The spatial distribution of inorganic S speciation contents in surface soils showed that they were generally significantly higher near the wharves of the lake area but were lower at the entrance of the Dawen River. The contents of TIS, HS, AS and HSS in the columnar soils were significantly different in vegetation areas, depths and seasons. Specifically, the inorganic S speciation contents were the highest in summer and in reed area, and the contents decreased with the increase of depth. Nevertheless, the TIS, AS and HSS contents in the Potamogeton crispus area had no significant seasonal change due to the influence of the interaction effect. Some forms of inorganic S in the surface and columnar soils were significantly positively correlated with each other, and there were generally significant positive correlations between the inorganic S forms and organic matter. Besides, the inorganic S forms except HVS in columnar soils were also positively correlated with soil pH but negatively correlated with soil Eh. Conclusion The spatial distribution of soil inorganic S in Dongping Lake wetland was mainly affected by human activities, vegetation distribution and hydrodynamic conditions; and soil organic matter, temperature, soil pH and Eh were the key influencing factors. -
表 1 东平湖湿地表层土壤各形态无机硫含量及土壤理化指标(n = 20)
Table 1. The inorganic sulfur speciation content and physicochemical properties of surface soils from Dongping Lake Wetland (n = 20)
参数
Parameter总无机硫(mg kg−1)
TIS各形态含量 (mg kg−1 )
Fractional contentpH 氧化还原电位
Eh
(mv)有机质
SOM
(g kg−1)全氮
TN
(g kg−1)全磷
TP
(g kg−1)水溶性硫
HS吸附性硫
AS盐酸溶解性硫
HSS盐酸挥发性硫
HVS平均值 75.85 32.03 19.78 22.46 1.59 7.52 −126.06 12.17 1.33 0.61 最大值 117.36 47.17 49.01 53.62 4.16 7.85 −49.00 28.32 3.05 0.79 最小值 31.26 6.41 1.12 0.11 0.22 6.50 −174.00 2.05 0.32 0.50 标准偏差 28.98 12.57 13.29 16.08 0.90 0.28 30.65 7.05 0.65 0.07 变异系数(%) 38.21 39.24 67.21 71.62 56.71 3.69 −24.31 57.94 49.23 11.74 注:TIS: Total inorganic sulfur; HS: H2O-S; AS: Adsorbed-S; HSS: HCl-Soluble-S; HVS: HCl-Volatile-S; SOM: Soil organic matter; TN: Total nitrogen; TP: Total phosphorus。下同。 表 2 不同季节、植被区、土层深度不同形态土壤无机硫含量及相关理化指标的差异性分析
Table 2. Analysis on the difference of soil inorganic sulfur content and physicochemical properties in different seasons, vegetation areas and soil layer depths
因子
Factor总无机硫
TIS
(mg kg−1)无机硫形态 (mg kg−1)
Inorganic sulfur formpH 氧化还原电位
Eh
(mv)有机质
OM
(g kg−1)土壤平均粒径
PS
(μm)水溶性硫
HS吸附性硫
AS盐酸溶解性硫
HSS盐酸挥发性硫
HVS季节 春季 120.61 ± 110.56 b 40.11 ± 38.92 b 50.27 ± 37.59 b 29.46 ± 38.43 b 0.77 ± 0.45 a 7.14 ± 0.03 d −160.00 ± 0.67 a 32.84 ± 0.91 ab − 夏季 223.15 ± 67.63 a 89.64 ± 22.89 a 62.79 ± 28.95 a 70.11 ± 31.35 a 0.61 ± 0.23 a 7.92 ± 0.02 a −175.27 ± 0.29 a 43.72 ± 0.77 a − 秋季 111.39 ± 71.75 b 47.37 ± 29.38 b 23.55 ± 18.06 c 39.81 ± 27.49 b 0.66 ± 0.29 a 7.30 ± 0.02 c −126.67 ± 0.19 a 23.00 ± 0.71 b − 冬季 62.67 ± 29.61 c 16.24 ± 12.35 c 14.75 ± 10.28 c 31.35 ± 23.78 b 0.33 ± 0.21 b 7.47 ± 0.02 b −136.33 ± 0.63 a 37.20 ± 0.31 a 12.12 ± 4.99 植被区 芦苇区 188.01 ± 115.97 a 68.72 ± 43.57 a 54.33 ± 40.68 a 64.38 ± 42.86 a 0.58 ± 0.42 a 7.43 ± 0.03 a −184.44 ± 0.50 a 63.13 ± 0.39 a 8.57 ± 0.41 菹草区 101.85 ± 62.67 b 39.02 ± 31.21 b 32.45 ± 18.84 b 29.78 ± 21.47 b 0.60 ± 0.32 a 7.48 ± 0.38 a −138.78 ± 0.04 a 17.64 ± 0.56 b 9.45 ± 0.64 混生区 132.35 ± 92.95 b 47.88 ± 33.32 b 40.15 ± 39.36 b 43.65 ± 33.82 b 0.66 ± 0.32 a 7.49 ± 0.05 a −154.52 ± 0.46 a 27.42 ± 0.79 b 19.53 ± 4.38 对照区 107.80 ± 89.09 b 42.16 ± 40.82 b 29.11 ± 23.83 b 35.98 ± 30.60 b 0.55 ± 0.34 a 7.44 ± 0.06 a −97.89 ± 0.54 a 28.56 ± 0.50 b 10.93 ± 0.81 深度 0 ~ 3cm 167.50 ± 82.00 a 61.71 ± 32.27 a 54.61 ± 30.61 a 50.55 ± 30.80 a 0.62 ± 0.33 a 7.44 ± 0.04 a −169.11 ± 0.34 a 43.08 ± 0.52 a 11.53 ± 4.19 3 ~ 6cm 135.03 ± 102.68 b 50.76 ± 40.10 a 34.41 ± 31.29 b 49.19 ± 41.28 a 0.68 ± 0.33 a 7.50 ± 0.05 a −139.14 ± 0.61 a 31.98 ± 0.73 b 13.00 ± 7.73 6 ~ 9cm 95.89 ± 89.30 c 36.29 ± 38.84 b 28.94 ± 30.81 b 30.17 ± 27.04 b 0.50 ± 0.36 a 7.44 ± 0.05 a −114.75 ± 0.77 a 27.50 ± 1.01 b 11.84 ± 3.25 ANOVA P 季节 < 0.001 < 0.001 < 0.001 < 0.05 < 0.05 < 0.001 0.173 < 0.05 − 植被区 < 0.001 < 0.05 < 0.05 < 0.05 0.856 0.447 0.104 < 0.001 − 深度 < 0.05 < 0.05 < 0.05 < 0.05 0.225 0.485 0.196 < 0.05 − 季节 ×
植被区< 0.001 < 0.05 < 0.001 < 0.05 0.152 0.077 0.107 < 0.05 − 季节 ×
深度0.314 0.380 0.103 0.688 0.304 0.277 0.415 0.400 − 植被区 ×
深度0.413 0.411 0.565 0.425 0.629 0.569 0.851 0.690 − 注:“PS”为Particle Size;“−”表示数据缺失,不同小写字母表示存在差异。 表 3 东平湖湿地土壤各形态无机硫与土壤理化性质之间的相关系数
Table 3. Correlation coefficients between soil inorganic sulfur speciation content and soil physicochemical properties in Dongping Lake Wetland
样品
SampleHS AS HSS HVS pH Eh PS OM TN TP 表层土壤
(n = 20)TIS 0.709** 0.537* 0.791** 0.221 0.075 −0.010 − 0.556* 0.094 0.137 HS 0.087 0.414 0.189 −0.095 0.243 − 0.476* 0.004 0.335 AS 0.092 −0.330 0.212 −0.008 − −0.065 −0.178 −0.194 HSS 0.466* 0.034 −0.155 − 0.672** 0.304 0.129 HVS 0.014 −0.348 − 0.210 0.163 0.288 植被区柱状土壤
(n = 48)TIS 0.955** 0.855** 0.899** 0.205 0.486** −0.384** −0.236 0.486** − − HS 0.744** 0.830** 0.199 0.528** −0.406** −0.185 0.432** − − AS 0.598** 0.195 0.343* −0.366* −0.235 0.434** − − HSS 0.153 0.435** −0.267 −0.226 0.457** − − HVS −0.071 −0.074 0.006 0.005 − − 注:“−”表示数据缺失,**表示P < 0.01;* 表示P < 0.05。 表 4 东平湖湿地表层土壤与其他区域表层土壤无机硫含量比较
Table 4. Comparison of inorganic sulfur content in surface soils between Dongping Lake Wetland and other regions
研究区域
Study area总无机硫
TIS
(mg kg−1)水溶性硫
HS
(mg kg−1)吸附性硫
AS
(mg kg−1)盐酸溶解性硫
HSS
(mg kg−1)盐酸挥发性硫
HVS
(mg kg−1)东平湖(本研究) 75.85 ± 28.98 32.03 ± 12.57 19.78 ± 13.29 22.46 ± 16.08 1.59 ± 0.90 闽江口[1] 364.88 ± 84.67 158.59 ± 36.83 55.49 ± 8.20 128.81 ± 43.79 21.99 ± 3.13 胶州湾[12] 429.65 343.30 ± 50.67 49.90 ± 24.43 75.11 ± 25.70 2.82 ± 0.52 三江平原[13] 173.86 ± 71.21 74.40 ± 35.61 49.23 ± 22.67 48.80 ± 12.70 1.43 ± 0.41 内蒙古草原[29] − 18.40 ± 10.20 7.00 − − 青藏高寒草原[29] − 83.90 22.50 − − 东北黑土[14] 88.20 22.20 − − − 注: “−”表示无机硫数据缺失。 -
[1] 王 华, 孙志高, 李家兵, 等. 闽江口芦苇与短叶茳芏湿地土壤无机硫形态分布特征及其影响因素[J]. 生态学报, 2019, 39(13): 4921 − 4932. [2] 杨永兴. 国际湿地科学研究的主要特点[J]. 地理科学进展, 2002, 21(2): 110 − 120. [3] Wu S B, Kuschk P, Wiessner A, et al. Sulphur transformations in constructed wetlands for wastewater treatment: A review[J]. Ecological Engineering, 2013, 52: 278 − 289. doi: 10.1016/j.ecoleng.2012.11.003 [4] 于君宝, 褚 磊, 宁 凯, 等. 黄河三角洲滨海湿地土壤硫含量分布特征[J]. 湿地科学, 2014, 12(5): 559 − 565. [5] 武慧慧, 孙志高, 孙文广, 等. 黄河口生态恢复工程对湿地土壤不同形态无机硫动态变化的影响[J]. 水土保持学报, 2020, 34(6): 150 − 165. [6] Jung K, Yong SO, Chang SX. Sulfate adsorption properties of acid-sensitive soils in the Athabasca oil Alberta, Canada[J]. Chemosphere, 2011, 84(4): 457 − 463. doi: 10.1016/j.chemosphere.2011.03.034 [7] 辛 颖, 刘常宏, 安树青. 海岸盐沼湿地土壤硫循环中的微生物及其作用[J]. 生态学杂志, 2007, 26(4): 577 − 581. doi: 10.3321/j.issn:1000-4890.2007.04.023 [8] 丁秋袆, 白军红, 高海峰, 等. 黄河三角洲湿地不同植被群落下土壤养分含量特征[J]. 农业环境科学学报, 2009, 28(10): 2092 − 2097. doi: 10.3321/j.issn:1672-2043.2009.10.016 [9] Krairapanond N, Delaune R D, Patrick W H. Sulfur dynamics in Louisiana coastal freshwater marsh soils[J]. Soil Science, 1991, 151(4): 261 − 273. doi: 10.1097/00010694-199104000-00001 [10] Fabbri D, Locatelli CE, Tarabusi S. Sulfur speciation in mercury-contaminated sediments of a coastal lagoon: the role of elemental sulfur[J]. Journal of Environmental Monitoring, 2001, 3(5): 483 − 486. doi: 10.1039/b104477j [11] 吴松峻, 汪 旋, 季秋忆, 等. 太湖西岸典型区域沉积物的硫铁分布特征及环境意义[J]. 湖泊科学, 2019, 31(4): 950 − 960. doi: 10.18307/2019.0408 [12] 李萍. 胶州湾互花米草潮滩土壤无机硫形态时空分布特征及其影响因素[D]. 青岛: 青岛大学, 2019. [13] 郝庆菊, 王起超, 王跃思. 三江平原典型湿地土壤中硫的分布特征[J]. 土壤通报, 2004, 35(3): 331 − 335. doi: 10.3321/j.issn:0564-3945.2004.03.022 [14] 迟凤琴, 汪景宽, 张玉龙. 东北3个典型黑土区土壤无机硫的形态分布[J]. 中国生态农业学报, 2011, 19(3): 511 − 515. [15] 王越颐. 鄱阳湖湿地硫的分布特征及其影响因素研究[D]. 南昌: 南昌大学, 2016. [16] 李晓瞳, 刘泽辉, 张 菊, 等. 东平湖沉积物中磷的赋存形态及其空间分布特征[J]. 土壤通报, 2021, 52(1): 62 − 67. [17] 张智博, 刘 涛, 曹起孟, 等. 东平湖沉积物-菹草系统碳、氮、磷空间分布及化学计量特征[J]. 环境化学, 2020, 39(8): 2263 − 2271. doi: 10.7524/j.issn.0254-6108.2019061401 [18] 张 菊, 邓焕广, 吴金甲, 等. 东平湖菹草腐烂对上覆水碳氮磷浓度的影响[J]. 人民黄河, 2015, 37(12): 65 − 68. doi: 10.3969/j.issn.1000-1379.2015.12.017 [19] 张 菊, 周韵平, 陈诗越, 等. 东平湖菹草腐烂对上覆水硫浓度的影响[J]. 人民黄河, 2014, 36(11): 65 − 68. doi: 10.3969/j.issn.1000-1379.2014.11.020 [20] 梁莉莉, 于泉洲, 邓焕广, 等. 基于时序NDVI的东平湖菹草(Potamogeton crispus L. )遥感提取及时空格局[J]. 湖泊科学, 2019, 31(2): 529 − 538. doi: 10.18307/2019.0221 [21] 邱 挺, 于泉洲, 刘加珍, 等. 基于Landsat数据的近30年东平湖湿地植被覆盖演变研究[J]. 山东林业科技, 2017, 47(1): 6 − 10. doi: 10.3969/j.issn.1002-2724.2017.01.002 [22] 中国林业科学研究院林业研究所森林土壤研究室. LY/T 1237-1999, 森林土壤有机质的测定及碳氮比的计算[S]. 北京: 中国人民共和国林业行业标准, 1999. [23] 鲁如坤. 土壤农业化学分析方法[M]. 北京. 中国农业科技出版社, 2000. [24] Krairapanond N, Delaune R D, Patrick W H. Seasonal distribution of sulfur in Louisiana salt marsh soils[J]. Estuaries, 1991, 14(1): 17 − 28. doi: 10.2307/1351978 [25] 陈冰冰, 孙志高, 孙文广, 等. 外源氮输入对生长季黄河口碱蓬湿地土壤无机硫形态变化特征的影响[J]. 水土保持学报, 2018, 32(5): 276 − 286. [26] Fang Z C, Qing A S, Fa D Z, et al. Sulfur storage changed by exotic Spartina alterniflora in coastal saltmarshes of China[J]. Ecological Engineering, 2008, 35(4): 536 − 543. [27] 曾从盛, 仝 川, 孙志高, 等. 闽江河口湿地生物地球化学元素循环研究进展[J]. 亚热带资源与环境学报, 2017, 12(3): 1 − 7. doi: 10.3969/j.issn.1673-7105.2017.03.002 [28] 宋少杰, 陈 宁, 王建华, 等. 青岛地区酸沉降现状的研究[J]. 环境科学研究, 1996, 9(5): 9 − 12. doi: 10.3321/j.issn:1001-6929.1996.05.007 [29] 刘潇潇, 王 钧, 曾 辉. 中国温带草地土壤硫的分布特征及其与环境因子的关系[J]. 生态学报, 2016, 36(24): 7919 − 7928. [30] 叶焰焰. 罗源湾滨海湿地沉积物中还原性无机硫的分布特征及影响研究[D]. 北京: 中国地质大学, 2017. [31] 田 涛, 张代钧, 李玉莲, 等. 重庆园博园龙景湖水体中无机硫分布特征及有机质的影响[J]. 安全与环境学报, 2016, 16(1): 304 − 308. -