留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低分子量有机酸对土壤有效磷及重金属释放影响的研究进展

赵宽 万昕 邢德科 胡睿鑫 周葆华 袁可升

赵 宽, 万 昕, 邢德科, 胡睿鑫, 周葆华, 袁可升. 低分子量有机酸对土壤有效磷及重金属释放影响的研究进展[J]. 土壤通报, 2022, 53(5): 1228 − 1236 doi: 10.19336/j.cnki.trtb.2021113002
引用本文: 赵 宽, 万 昕, 邢德科, 胡睿鑫, 周葆华, 袁可升. 低分子量有机酸对土壤有效磷及重金属释放影响的研究进展[J]. 土壤通报, 2022, 53(5): 1228 − 1236 doi: 10.19336/j.cnki.trtb.2021113002
ZHAO Kuan, WAN Xin, XING De-ke, HU Rui-xin, ZHOU Bao-hua, YUAN Ke-sheng. Research Progress on Effects of Low Molecular Weight Organic Acids on Release of Available Phosphorus and Heavy Metals in Soil[J]. Chinese Journal of Soil Science, 2022, 53(5): 1228 − 1236 doi: 10.19336/j.cnki.trtb.2021113002
Citation: ZHAO Kuan, WAN Xin, XING De-ke, HU Rui-xin, ZHOU Bao-hua, YUAN Ke-sheng. Research Progress on Effects of Low Molecular Weight Organic Acids on Release of Available Phosphorus and Heavy Metals in Soil[J]. Chinese Journal of Soil Science, 2022, 53(5): 1228 − 1236 doi: 10.19336/j.cnki.trtb.2021113002

低分子量有机酸对土壤有效磷及重金属释放影响的研究进展

doi: 10.19336/j.cnki.trtb.2021113002
基金项目: 安徽省自然科学基金项目(1908085QD149)、安徽省科技重大专项项目(17030701057)和安徽省高校优秀人才支持计划项目(gxyq2021193)资助
详细信息
    作者简介:

    赵宽:赵 宽(1986−),男,安徽池州人,博士,副教授,主要从事土壤生态学方面的研究。E-mail: zhaokuan@aqnu.edu.cn

  • 中图分类号: X53;S153

Research Progress on Effects of Low Molecular Weight Organic Acids on Release of Available Phosphorus and Heavy Metals in Soil

  • 摘要: 农药化肥的过量施用、重金属矿产开发冶炼、污水灌溉等导致土壤磷素养分降低和重金属污染,对生态环境、粮食安全和人类健康带来一定的风险隐患。土壤低分子量有机酸是一类重要的土壤有机活性物质,在土壤质地、养分循环和重金属毒害等方面起重要作用,但低分子量有机酸对土壤磷素和重金属释放影响的研究尚没有系统归纳。本文结合国内外研究进展,综述了土壤低分子量有机酸的来源、浓度、功能及其影响因素,举例说明了低分子量有机酸种类、浓度等对土壤磷及重金属释放的影响。系统总结了低分子量有机酸对土壤磷活化及重金属释放的机制。低分子量有机酸与其他物质协同提升土壤磷素有效性和降低重金属污染,这些结果为土壤磷素有效性的提升和重金属污染土壤修复提供科学依据和技术支撑。
  • [1] 王永壮, 陈 欣, 史 奕. 农田土壤中磷素有效性及影响因素[J]. 应用生态学报, 2013, 24(1): 260 − 268.
    [2] 张乃于, 闫双堆, 李 娟, 等. 低分子量有机酸对土壤磷组分影响的Meta分析[J]. 植物营养与肥料学报, 2019, 25(12): 2076 − 2083. doi: 10.11674/zwyf.19330
    [3] 田 江, 梁翠月, 陆 星, 等. 根系分泌物调控植物适应低磷胁迫的机制[J]. 华南农业大学学报, 2019, 40(5): 175 − 185. doi: 10.7671/j.issn.1001-411X.201905068
    [4] 秦樊鑫, 魏朝富, 李红梅. 重金属污染土壤修复技术综述与展望[J]. 环境科学与技术, 2015, 38(12Q): 199 − 208.
    [5] 韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展[J]. 生态学报, 2001, 21(7): 1196 − 1204. doi: 10.3321/j.issn:1000-0933.2001.07.024
    [6] Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review[J]. Science of the Total Environment, 2018, 612: 522 − 537. doi: 10.1016/j.scitotenv.2017.08.095
    [7] 王永壮, 陈 欣, 史 奕, 等. 低分子量有机酸对土壤磷活化及其机制研究进展[J]. 生态学杂志, 2018, 37(7): 2189 − 2198.
    [8] 王兰兰, 宋晓卉, 杨 笛, 等. 环境条件对植物有机酸影响研究进展[J]. 沈阳师范大学学报(自然科学版), 2019, 37(3): 236 − 239.
    [9] 赵 宽, 周葆华, 马万征, 等. 不同环境胁迫对根系分泌有机酸的影响研究进展[J]. 土壤, 2016, 48(2): 235 − 240.
    [10] 张锡洲, 李廷轩, 王永东. 植物生长环境与根系分泌物的关系[J]. 土壤通报, 2007, 38(4): 785 − 789. doi: 10.3321/j.issn:0564-3945.2007.04.034
    [11] Jones D L. Organic acids in the rhizosphere-a critical review[J]. Plant and Soil, 1998, 205(1): 25 − 44. doi: 10.1023/A:1004356007312
    [12] 丁永祯, 李志安, 邹 碧. 土壤低分子量有机酸及其生态功能[J]. 土壤, 2005, 37(3): 243 − 250. doi: 10.3321/j.issn:0253-9829.2005.03.004
    [13] Ryan P R, Delhaize E, Jones D L. Function and mechanism of organic anion exudation from plant roots[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 527 − 560. doi: 10.1146/annurev.arplant.52.1.527
    [14] 赵 宽, 吴沿友. 根系分泌的有机酸及其对喀斯特植物、土壤碳汇的影响[J]. 中国岩溶, 2012, 30(4): 104 − 109.
    [15] Chen Y T, Wang Y, Yeh K C. Role of root exudates in metal acquisition and tolerance[J]. Current Opinion in Plant Biology, 2017, 39: 66 − 72. doi: 10.1016/j.pbi.2017.06.004
    [16] 罗永清, 赵学勇, 李美霞. 植物根系分泌物生态效应及其影响因素研究综述[J]. 应用生态学报, 2012, 23(12): 3496 − 3504.
    [17] Baetz U, Martinoia E. Root exudates: the hidden part of plant defense[J]. Trends in Plant Science, 2014, 19(2): 90 − 98. doi: 10.1016/j.tplants.2013.11.006
    [18] Yang X, Chen X, Guo E, et al. Path analysis of phosphorus activation capacity as induced by low-molecular-weight organic acids in a black soil of northeast China[J]. Journal of Soils and Sediments, 2019, 19: 840 − 847. doi: 10.1007/s11368-018-2034-z
    [19] Hoffland E, van den Boogaard R, Nelemans J, et al. Biosynthesis and root exudation of citric and malic acid in phosphate-starved rape plants[J]. New Phytologist, 1992, 122(4): 675 − 680. doi: 10.1111/j.1469-8137.1992.tb00096.x
    [20] Almeida D S, Delai L B, Frankland Sawaya A C H F, et al. Exudation of organic acid anions by tropical grasses in response to low phosphorus availability[J]. Scientific reports, 2020, 10(1): 16955 − 16955. doi: 10.1038/s41598-020-73398-1
    [21] 李德华, 向春雷, 姜益泉, 等. 低磷胁迫下水稻不同品种根系有机酸分泌的差异[J]. 中国农学通报, 2005, 21(11): 186 − 189.
    [22] 蔡银美, 赵庆霞, 张成富. 低磷下植物根系分泌物对土壤磷转化的影响研究进展[J]. 东北农业大学学报, 2021, 52(2): 79 − 86. doi: 10.3969/j.issn.1005-9369.2021.02.010
    [23] 陈 凯, 马 敬, 曹一平, 等. 磷亏缺下不同植物根系有机酸分泌[J]. 中国农业大学学报, 1999, 4(3): 58 − 62. doi: 10.3321/j.issn:1007-4333.1999.03.012
    [24] Bi J G, Hou D P, Zhang X X, et al. A novel water-saving and drought-resistance rice variety promotes phosphorus absorption through root secreting organic acid compounds to stabilize yield under water-saving conditions[J]. Journal of Cleaner Production, 2021, 315: 127992. doi: 10.1016/j.jclepro.2021.127992
    [25] Zhao K, Wu Y Y. Rhizosphere calcareous soil P-extraction at the expense of organic carbon from root-exuded organic acids induced by phosphorus deficiency in several plant species[J]. Soil Science and Plant Nutrition, 2014, 60(5): 640 − 650. doi: 10.1080/00380768.2014.934191
    [26] Carvalhais L C, Dennis P G, Fedoseyenko D, et al. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(1): 3 − 11. doi: 10.1002/jpln.201000085
    [27] Loss S P, Robson A D, Ritchie G S P. Nutrient uptake and organic acid anion metabolism in lupins and peas supplied with nitrate[J]. Annals of Botany, 1994, 74: 69 − 74. doi: 10.1093/aob/74.1.69
    [28] Imas P, Bar-Yosef B, Kafkafi U, et al. Release of carboxylic anions and protons by tomato roots in response to ammonium nitrate ratio and pH in nutrient solution[J]. Plant and Soil, 1997, 191(1): 27 − 34. doi: 10.1023/A:1004214814504
    [29] Neumann G, Römheld V. The release of root exudates as affected by the plant physiological status[M]. In: Pinton R, Varanini Z, Nannipieri Z (eds. ) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker Inc. , 2000.
    [30] Kraffczyk I, Trolldenier G, Beringer H. Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms[J]. Soil Biology and Biochemistry, 1984, 16(4): 315 − 322. doi: 10.1016/0038-0717(84)90025-7
    [31] Gerke J. Chemische prozesse der Nährstoffmobilisierung in der Rhizosphäre und ihre Bedeutung für den Übergang vom Boden in die Pflanze[M]. Cuvillier Verlag, Göttingen, Germany, 1995.
    [32] Walker T S, Bais H P, Grotewold E, et al. Root exudation and rhizosphere biology[J]. Plant Physiology, 2003, 132(1): 44 − 51. doi: 10.1104/pp.102.019661
    [33] Ohwaki Y, Sugahara K. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinum L. )[J]. Plant and Soil, 1997, 189(1): 49 − 55. doi: 10.1023/A:1004271108351
    [34] 李振侠, 徐继忠, 高 仪, 等. 苹果砧木SH40和八棱海棠缺铁胁迫下根系有机酸分泌的差异[J]. 园艺学报, 2007, 34(2): 279 − 282. doi: 10.3321/j.issn:0513-353X.2007.02.003
    [35] 王水良, 王 平, 王趁义. 铝胁迫下马尾松幼苗有机酸分泌和根际pH值的变化[J]. 生态与农村环境学报, 2010, 26(1): 87 − 91. doi: 10.3969/j.issn.1673-4831.2010.01.017
    [36] 王小东, 狄 岚, 华小菊. 高铝低磷对油茶生长及其根系分泌有机酸的影响[J]. 福建林业科技, 2021, 48(1): 12 − 17.
    [37] 刘 娣, 刘爱红, 王金花, 等. 缺锌苹果树有机酸与锌吸收分配的关系[J]. 中国农业科学, 2010, 43(16): 3381 − 3391. doi: 10.3864/j.issn.0578-1752.2010.16.014
    [38] 旷远文, 温达志, 钟传文, 等. 根系分泌物及其在植物修复中的作用[J]. 植物生态学报, 2003, 27(5): 709 − 717. doi: 10.3321/j.issn:1005-264X.2003.05.020
    [39] 张 利, 何新华, 陈 虎, 等. 铅胁迫下杨梅根系分泌有机酸的研究[J]. 浙江林学院学报, 2009, 26(5): 663 − 666.
    [40] 范洪黎, 王 旭, 周 卫. 不同镉积累型苋菜(Amaranthus mangostanus L. )根际低分子量有机酸与镉吸收的关系[J]. 中国农业科学, 2007, 40(12): 2727 − 2733. doi: 10.3321/j.issn:0578-1752.2007.12.009
    [41] 樊利华, 周星梅, 吴淑兰, 等. 干旱胁迫对植物根际环境影响的研究进展[J]. 应用与环境生物学报, 2019, 25(5): 1244 − 1251.
    [42] Song F, Han X, Zhu X. Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages[J]. Canadian Journal of Soil Science, 2012, 92(3): 501 − 507. doi: 10.4141/cjss2010-057
    [43] Henry A, Doucette W, Norton J, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress[J]. Journal of Environmental Quality, 2007, 36(3): 904 − 912. doi: 10.2134/jeq2006.0425sc
    [44] 董艺博. 干旱胁迫对构树幼苗根际环境及根系有机酸组成影响研究[D]. 贵阳: 贵州大学, 2020.
    [45] 尹德良. 三峡库区消落带低分子量有机酸的分布特征及其对汞甲基化的影响[D]. 重庆: 西南大学, 2018.
    [46] Zhao K, Wan X, Zhou B H, et al. Temporal and spatial distribution characteristics of rhizosphere organic acids underwater level fluctuations in three types of lakes in China[J]. Applied Ecology and Environmental Research, 2020, 18(5): 7201 − 7214. doi: 10.15666/aeer/1805_72017214
    [47] Hoffland E, Wei C, Wissuwa M. Organic anion exudation by lowland rice (Oryza sativa L. ) at zinc and phosphorus deficiency[J]. Plant and Soil, 2006, 283(1-2): 155 − 162. doi: 10.1007/s11104-005-3937-1
    [48] Rasouli-Sadaghiani MH, Sadeghzadeh B, Sepehr E, et al. Root exudation and zinc uptake by barley genotypes differing in Zn efficiency[J]. Journal of Plant Nutrition, 2011, 34(8): 1120 − 1132. doi: 10.1080/01904167.2011.558156
    [49] Tyler G, Ström L. Differing organic acid exudation pattern explains calcifuge and acidifuge behavior of plants[J]. Annals of Botany, 1995, 75: 75 − 78. doi: 10.1016/S0305-7364(05)80011-3
    [50] Narula N, Kothe E, Behl R K. Role of root exudates in plant-microbe interactions[J]. Journal of Applied Botany and Food Quality, 2012, 82(2): 122 − 130.
    [51] 宋金凤. 凋落物中的有机酸及其对森林土壤的磷释放效应[D]. 哈尔滨: 东北林业大学, 2003.
    [52] 陈小燕. 土壤中有机残体腐解过程的有机酸动态变化研究[D]. 杨凌: 西北农林科技大学, 2008.
    [53] van Hees P A W, Jones D L, Finlay R, et al. The carbon we do not see-the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review[J]. Soil Biology and Biochemistry, 2005, 37(1): 1 − 13. doi: 10.1016/j.soilbio.2004.06.010
    [54] Cunningham J E, Kuiack C. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii[J]. Applied and Environmental Microbiology, 1992, 58(5): 1451 − 1458. doi: 10.1128/aem.58.5.1451-1458.1992
    [55] 宋金凤, 崔晓阳. 森林土壤中低分子有机酸研究进展[J]. 林业科学, 2008, 44(6): 118 − 124. doi: 10.3321/j.issn:1001-7488.2008.06.021
    [56] Shen A L, Li X Y, Kanamori T, et al. Low-molecular-weight aliphatic acids in soils incubated with plant residues under different moisture conditions[J]. Pedosphere, 1997, 7: 79 − 86.
    [57] Miao S J, Shi H, Wang G H, et al. Seven years of repeated cattle manure addition to eroded Chinese Mollisols increase low-molecular-weight organic acids in soil solution[J]. Plant and Soil, 2013, 369: 577 − 584. doi: 10.1007/s11104-013-1594-3
    [58] 曹莹菲. 腐解过程中还田秸秆和土壤有机酸、质能及结构变化特征[D]. 杨凌: 西北农林科技大学, 2016.
    [59] Ricard B, Couee I, Raymond P, et al. Plant-metabolism under hypoxia and anoxia[J]. Plant Physiology and Biochemistry, 1994, 32(1): 1 − 10.
    [60] Cao Y F, Zhang H, Liu K, et al. Organic acids variation in plant residues and soils among agricultural treatments[J]. Agronomy Journal, 2015, 107(6): 2171 − 2180. doi: 10.2134/agronj15.0137
    [61] Hou E, Tang S, Chen C, et al. Solubility of phosphorus in subtropical forest soils as influenced by low-molecular organic acids and key soil properties[J]. Geoderma, 2018, 313: 172 − 180. doi: 10.1016/j.geoderma.2017.10.039
    [62] 陈立新, 梁薇薇, 段文标, 等. 3种低分子质量有机酸对温带典型林型土壤无机磷组分的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(4): 75 − 82.
    [63] Huang Y, Zhao L, Keller A A. Interactions, transformations, and bioavailability of nano-copper exposed to root exudates[J]. Environmental Science and Technology, 2017, 51(17): 9774 − 9783. doi: 10.1021/acs.est.7b02523
    [64] Jones D L, Dennis P G, Owen A G, et al. Organic acid behaviour in soils-misconceptions and knowledge gaps[J]. Plant and Soil, 2003, 248: 31 − 41. doi: 10.1023/A:1022304332313
    [65] Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition in low-nutrient environments[J]. Plant and Soil, 2002, 245: 35 − 47. doi: 10.1023/A:1020809400075
    [66] 介晓磊, 李有田, 庞荣丽, 等. 低分子量有机酸对石灰性土壤磷素形态转化及有效性的影响[J]. 土壤通报, 2015, 36(6): 856 − 860.
    [67] 陆文龙, 王敬国, 曹一平, 等. 低分子量有机酸对土壤磷释放动力学的影响[J]. 土壤学报, 1998, 35(4): 493 − 500. doi: 10.3321/j.issn:0564-3929.1998.04.008
    [68] Keiluweit M, Bougoure J J, Nico P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015, 5(6): 588 − 595. doi: 10.1038/nclimate2580
    [69] Clarholm M, Skyllberg U, Rosling A. Organic acid induced release of nutrients from metal-stabilized soil organic matter-the unbutton model[J]. Soil Biology and Biochemistry, 2015, 84: 168 − 176. doi: 10.1016/j.soilbio.2015.02.019
    [70] Jones D L, Nguyen C, Finlay R D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface[J]. Plant and Soil, 2009, 321: 5 − 33. doi: 10.1007/s11104-009-9925-0
    [71] Zahar Haichar F, Santaella C, Heulin T, et al. Root exudates mediated interactions belowground[J]. Soil Biology and Biochemistry, 2014, 77: 69 − 80. doi: 10.1016/j.soilbio.2014.06.017
    [72] Parker D R, Chaney R L, Norvell W A. In Loeppert R H, Schwab A P, Goldberg S (eds. ) Chemical equilibria models: applications to plant research[M]. In chemical equilibria and reaction models, special publication 42. Soil Science Society of America, Wisconsin, 1995.
    [73] Sokolova T A. Low-molecular-weight organic acids in soils: sources, composition, concentrations, and functions: a review[J]. Eurasian Soil Science, 2020, 53(5): 580 − 594. doi: 10.1134/S1064229320050154
    [74] 刘 翠, 牟凤利, 王吉秀, 等. 低分子量有机酸对植物吸收和累积重金属的影响综述[J]. 江苏农业科学, 2021, 49(8): 38 − 43.
    [75] Montiel-Rozas M M, Madejón E, Madejón P. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: an assessment in sand and soil conditions under different levels of contamination[J]. Environmental Pollution, 2016, 216: 273 − 281. doi: 10.1016/j.envpol.2016.05.080
    [76] 宋金凤, 杨金艳, 崔晓阳. 低分子有机酸/盐对复合污染土壤中Pb、Zn、As有效性的影响[J]. 水土保持学报, 2010, 24(4): 108 − 112 + 118.
    [77] 周鑫斌, 黄建国, 赖 凡. pH和有机酸对酸性紫色土吸附-解吸镉的影响[J]. 水土保持学报, 2007, 21(6): 139 − 142. doi: 10.3321/j.issn:1009-2242.2007.06.032
    [78] 花 敏, 张 笛, 姜艾伶, 等. 铁细菌培养过程中低分子有机酸钠盐对含硫酸根铁矿物形成的影响[J]. 岩石矿物学杂志, 2021, 40(4): 786 − 794. doi: 10.3969/j.issn.1000-6524.2021.04.010
    [79] 唐 佳, 王 艳, 伏 毅, 等. 低分子有机酸对土壤中镍的活化作用研究[J]. 安徽农业科学, 2021, 49(5): 87 − 89. doi: 10.3969/j.issn.0517-6611.2021.05.024
    [80] 王沛琦, 胡尊红, 胡学礼, 等. 镉胁迫对蓖麻有机酸含量及镉吸收的影响[J]. 山西农业科学, 2021, 49(7): 822 − 827. doi: 10.3969/j.issn.1002-2481.2021.07.06
    [81] 王 喆, 赵志西, 刘杨秋凡, 等. 砷在新疆奎屯河沉积物上的吸附及有机酸对吸附的影响[J]. 生态学杂志, 2021, 40(6): 1766 − 1774.
    [82] 朱艳霞, 魏幼璋, 叶正钱, 等. 有机酸在超积累植物重金属解毒机制中的作用[J]. 西北农林科技大学学报(自然科学版), 2006, 34(7): 121 − 126.
    [83] 傅晓萍, 豆长明, 胡少平, 等. 有机酸在植物对重金属耐性和解毒机制中的作用[J]. 植物生态学报, 2010, 34(11): 1354 − 1358. doi: 10.3773/j.issn.1005-264x.2010.11.013
    [84] 綦远才, 周 翠, 何欣芮, 等. 两种外源有机酸对土壤Cd形态及秋华柳Cd积累的影响[J]. 环境科学研究, 2021, 34(9): 2220 − 2227.
    [85] 刘桂华, 秦 松, 柴冠群, 等. 低分子有机酸对贵州黄壤龙葵吸收镉的影响[J]. 南方农业学报, 2020, 51(11): 2682 − 2689. doi: 10.3969/j.issn.2095-1191.2020.11.010
    [86] 刘桂华, 敖 明, 柴冠群, 等. 低分子有机酸对贵州黄壤中镉释放及形态的影响[J]. 土壤通报, 2018, 49(6): 1473 − 1479.
  • 加载中
计量
  • 文章访问数:  95
  • HTML全文浏览量:  38
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-02
  • 录用日期:  2022-03-18
  • 修回日期:  2022-02-16
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回