[1] |
王永壮, 陈 欣, 史 奕. 农田土壤中磷素有效性及影响因素[J]. 应用生态学报, 2013, 24(1): 260 − 268.
|
[2] |
张乃于, 闫双堆, 李 娟, 等. 低分子量有机酸对土壤磷组分影响的Meta分析[J]. 植物营养与肥料学报, 2019, 25(12): 2076 − 2083. doi: 10.11674/zwyf.19330
|
[3] |
田 江, 梁翠月, 陆 星, 等. 根系分泌物调控植物适应低磷胁迫的机制[J]. 华南农业大学学报, 2019, 40(5): 175 − 185. doi: 10.7671/j.issn.1001-411X.201905068
|
[4] |
秦樊鑫, 魏朝富, 李红梅. 重金属污染土壤修复技术综述与展望[J]. 环境科学与技术, 2015, 38(12Q): 199 − 208.
|
[5] |
韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展[J]. 生态学报, 2001, 21(7): 1196 − 1204. doi: 10.3321/j.issn:1000-0933.2001.07.024
|
[6] |
Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review[J]. Science of the Total Environment, 2018, 612: 522 − 537. doi: 10.1016/j.scitotenv.2017.08.095
|
[7] |
王永壮, 陈 欣, 史 奕, 等. 低分子量有机酸对土壤磷活化及其机制研究进展[J]. 生态学杂志, 2018, 37(7): 2189 − 2198.
|
[8] |
王兰兰, 宋晓卉, 杨 笛, 等. 环境条件对植物有机酸影响研究进展[J]. 沈阳师范大学学报(自然科学版), 2019, 37(3): 236 − 239.
|
[9] |
赵 宽, 周葆华, 马万征, 等. 不同环境胁迫对根系分泌有机酸的影响研究进展[J]. 土壤, 2016, 48(2): 235 − 240.
|
[10] |
张锡洲, 李廷轩, 王永东. 植物生长环境与根系分泌物的关系[J]. 土壤通报, 2007, 38(4): 785 − 789. doi: 10.3321/j.issn:0564-3945.2007.04.034
|
[11] |
Jones D L. Organic acids in the rhizosphere-a critical review[J]. Plant and Soil, 1998, 205(1): 25 − 44. doi: 10.1023/A:1004356007312
|
[12] |
丁永祯, 李志安, 邹 碧. 土壤低分子量有机酸及其生态功能[J]. 土壤, 2005, 37(3): 243 − 250. doi: 10.3321/j.issn:0253-9829.2005.03.004
|
[13] |
Ryan P R, Delhaize E, Jones D L. Function and mechanism of organic anion exudation from plant roots[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 527 − 560. doi: 10.1146/annurev.arplant.52.1.527
|
[14] |
赵 宽, 吴沿友. 根系分泌的有机酸及其对喀斯特植物、土壤碳汇的影响[J]. 中国岩溶, 2012, 30(4): 104 − 109.
|
[15] |
Chen Y T, Wang Y, Yeh K C. Role of root exudates in metal acquisition and tolerance[J]. Current Opinion in Plant Biology, 2017, 39: 66 − 72. doi: 10.1016/j.pbi.2017.06.004
|
[16] |
罗永清, 赵学勇, 李美霞. 植物根系分泌物生态效应及其影响因素研究综述[J]. 应用生态学报, 2012, 23(12): 3496 − 3504.
|
[17] |
Baetz U, Martinoia E. Root exudates: the hidden part of plant defense[J]. Trends in Plant Science, 2014, 19(2): 90 − 98. doi: 10.1016/j.tplants.2013.11.006
|
[18] |
Yang X, Chen X, Guo E, et al. Path analysis of phosphorus activation capacity as induced by low-molecular-weight organic acids in a black soil of northeast China[J]. Journal of Soils and Sediments, 2019, 19: 840 − 847. doi: 10.1007/s11368-018-2034-z
|
[19] |
Hoffland E, van den Boogaard R, Nelemans J, et al. Biosynthesis and root exudation of citric and malic acid in phosphate-starved rape plants[J]. New Phytologist, 1992, 122(4): 675 − 680. doi: 10.1111/j.1469-8137.1992.tb00096.x
|
[20] |
Almeida D S, Delai L B, Frankland Sawaya A C H F, et al. Exudation of organic acid anions by tropical grasses in response to low phosphorus availability[J]. Scientific reports, 2020, 10(1): 16955 − 16955. doi: 10.1038/s41598-020-73398-1
|
[21] |
李德华, 向春雷, 姜益泉, 等. 低磷胁迫下水稻不同品种根系有机酸分泌的差异[J]. 中国农学通报, 2005, 21(11): 186 − 189.
|
[22] |
蔡银美, 赵庆霞, 张成富. 低磷下植物根系分泌物对土壤磷转化的影响研究进展[J]. 东北农业大学学报, 2021, 52(2): 79 − 86. doi: 10.3969/j.issn.1005-9369.2021.02.010
|
[23] |
陈 凯, 马 敬, 曹一平, 等. 磷亏缺下不同植物根系有机酸分泌[J]. 中国农业大学学报, 1999, 4(3): 58 − 62. doi: 10.3321/j.issn:1007-4333.1999.03.012
|
[24] |
Bi J G, Hou D P, Zhang X X, et al. A novel water-saving and drought-resistance rice variety promotes phosphorus absorption through root secreting organic acid compounds to stabilize yield under water-saving conditions[J]. Journal of Cleaner Production, 2021, 315: 127992. doi: 10.1016/j.jclepro.2021.127992
|
[25] |
Zhao K, Wu Y Y. Rhizosphere calcareous soil P-extraction at the expense of organic carbon from root-exuded organic acids induced by phosphorus deficiency in several plant species[J]. Soil Science and Plant Nutrition, 2014, 60(5): 640 − 650. doi: 10.1080/00380768.2014.934191
|
[26] |
Carvalhais L C, Dennis P G, Fedoseyenko D, et al. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(1): 3 − 11. doi: 10.1002/jpln.201000085
|
[27] |
Loss S P, Robson A D, Ritchie G S P. Nutrient uptake and organic acid anion metabolism in lupins and peas supplied with nitrate[J]. Annals of Botany, 1994, 74: 69 − 74. doi: 10.1093/aob/74.1.69
|
[28] |
Imas P, Bar-Yosef B, Kafkafi U, et al. Release of carboxylic anions and protons by tomato roots in response to ammonium nitrate ratio and pH in nutrient solution[J]. Plant and Soil, 1997, 191(1): 27 − 34. doi: 10.1023/A:1004214814504
|
[29] |
Neumann G, Römheld V. The release of root exudates as affected by the plant physiological status[M]. In: Pinton R, Varanini Z, Nannipieri Z (eds. ) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker Inc. , 2000.
|
[30] |
Kraffczyk I, Trolldenier G, Beringer H. Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms[J]. Soil Biology and Biochemistry, 1984, 16(4): 315 − 322. doi: 10.1016/0038-0717(84)90025-7
|
[31] |
Gerke J. Chemische prozesse der Nährstoffmobilisierung in der Rhizosphäre und ihre Bedeutung für den Übergang vom Boden in die Pflanze[M]. Cuvillier Verlag, Göttingen, Germany, 1995.
|
[32] |
Walker T S, Bais H P, Grotewold E, et al. Root exudation and rhizosphere biology[J]. Plant Physiology, 2003, 132(1): 44 − 51. doi: 10.1104/pp.102.019661
|
[33] |
Ohwaki Y, Sugahara K. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinum L. )[J]. Plant and Soil, 1997, 189(1): 49 − 55. doi: 10.1023/A:1004271108351
|
[34] |
李振侠, 徐继忠, 高 仪, 等. 苹果砧木SH40和八棱海棠缺铁胁迫下根系有机酸分泌的差异[J]. 园艺学报, 2007, 34(2): 279 − 282. doi: 10.3321/j.issn:0513-353X.2007.02.003
|
[35] |
王水良, 王 平, 王趁义. 铝胁迫下马尾松幼苗有机酸分泌和根际pH值的变化[J]. 生态与农村环境学报, 2010, 26(1): 87 − 91. doi: 10.3969/j.issn.1673-4831.2010.01.017
|
[36] |
王小东, 狄 岚, 华小菊. 高铝低磷对油茶生长及其根系分泌有机酸的影响[J]. 福建林业科技, 2021, 48(1): 12 − 17.
|
[37] |
刘 娣, 刘爱红, 王金花, 等. 缺锌苹果树有机酸与锌吸收分配的关系[J]. 中国农业科学, 2010, 43(16): 3381 − 3391. doi: 10.3864/j.issn.0578-1752.2010.16.014
|
[38] |
旷远文, 温达志, 钟传文, 等. 根系分泌物及其在植物修复中的作用[J]. 植物生态学报, 2003, 27(5): 709 − 717. doi: 10.3321/j.issn:1005-264X.2003.05.020
|
[39] |
张 利, 何新华, 陈 虎, 等. 铅胁迫下杨梅根系分泌有机酸的研究[J]. 浙江林学院学报, 2009, 26(5): 663 − 666.
|
[40] |
范洪黎, 王 旭, 周 卫. 不同镉积累型苋菜(Amaranthus mangostanus L. )根际低分子量有机酸与镉吸收的关系[J]. 中国农业科学, 2007, 40(12): 2727 − 2733. doi: 10.3321/j.issn:0578-1752.2007.12.009
|
[41] |
樊利华, 周星梅, 吴淑兰, 等. 干旱胁迫对植物根际环境影响的研究进展[J]. 应用与环境生物学报, 2019, 25(5): 1244 − 1251.
|
[42] |
Song F, Han X, Zhu X. Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages[J]. Canadian Journal of Soil Science, 2012, 92(3): 501 − 507. doi: 10.4141/cjss2010-057
|
[43] |
Henry A, Doucette W, Norton J, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress[J]. Journal of Environmental Quality, 2007, 36(3): 904 − 912. doi: 10.2134/jeq2006.0425sc
|
[44] |
董艺博. 干旱胁迫对构树幼苗根际环境及根系有机酸组成影响研究[D]. 贵阳: 贵州大学, 2020.
|
[45] |
尹德良. 三峡库区消落带低分子量有机酸的分布特征及其对汞甲基化的影响[D]. 重庆: 西南大学, 2018.
|
[46] |
Zhao K, Wan X, Zhou B H, et al. Temporal and spatial distribution characteristics of rhizosphere organic acids underwater level fluctuations in three types of lakes in China[J]. Applied Ecology and Environmental Research, 2020, 18(5): 7201 − 7214. doi: 10.15666/aeer/1805_72017214
|
[47] |
Hoffland E, Wei C, Wissuwa M. Organic anion exudation by lowland rice (Oryza sativa L. ) at zinc and phosphorus deficiency[J]. Plant and Soil, 2006, 283(1-2): 155 − 162. doi: 10.1007/s11104-005-3937-1
|
[48] |
Rasouli-Sadaghiani MH, Sadeghzadeh B, Sepehr E, et al. Root exudation and zinc uptake by barley genotypes differing in Zn efficiency[J]. Journal of Plant Nutrition, 2011, 34(8): 1120 − 1132. doi: 10.1080/01904167.2011.558156
|
[49] |
Tyler G, Ström L. Differing organic acid exudation pattern explains calcifuge and acidifuge behavior of plants[J]. Annals of Botany, 1995, 75: 75 − 78. doi: 10.1016/S0305-7364(05)80011-3
|
[50] |
Narula N, Kothe E, Behl R K. Role of root exudates in plant-microbe interactions[J]. Journal of Applied Botany and Food Quality, 2012, 82(2): 122 − 130.
|
[51] |
宋金凤. 凋落物中的有机酸及其对森林土壤的磷释放效应[D]. 哈尔滨: 东北林业大学, 2003.
|
[52] |
陈小燕. 土壤中有机残体腐解过程的有机酸动态变化研究[D]. 杨凌: 西北农林科技大学, 2008.
|
[53] |
van Hees P A W, Jones D L, Finlay R, et al. The carbon we do not see-the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review[J]. Soil Biology and Biochemistry, 2005, 37(1): 1 − 13. doi: 10.1016/j.soilbio.2004.06.010
|
[54] |
Cunningham J E, Kuiack C. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii[J]. Applied and Environmental Microbiology, 1992, 58(5): 1451 − 1458. doi: 10.1128/aem.58.5.1451-1458.1992
|
[55] |
宋金凤, 崔晓阳. 森林土壤中低分子有机酸研究进展[J]. 林业科学, 2008, 44(6): 118 − 124. doi: 10.3321/j.issn:1001-7488.2008.06.021
|
[56] |
Shen A L, Li X Y, Kanamori T, et al. Low-molecular-weight aliphatic acids in soils incubated with plant residues under different moisture conditions[J]. Pedosphere, 1997, 7: 79 − 86.
|
[57] |
Miao S J, Shi H, Wang G H, et al. Seven years of repeated cattle manure addition to eroded Chinese Mollisols increase low-molecular-weight organic acids in soil solution[J]. Plant and Soil, 2013, 369: 577 − 584. doi: 10.1007/s11104-013-1594-3
|
[58] |
曹莹菲. 腐解过程中还田秸秆和土壤有机酸、质能及结构变化特征[D]. 杨凌: 西北农林科技大学, 2016.
|
[59] |
Ricard B, Couee I, Raymond P, et al. Plant-metabolism under hypoxia and anoxia[J]. Plant Physiology and Biochemistry, 1994, 32(1): 1 − 10.
|
[60] |
Cao Y F, Zhang H, Liu K, et al. Organic acids variation in plant residues and soils among agricultural treatments[J]. Agronomy Journal, 2015, 107(6): 2171 − 2180. doi: 10.2134/agronj15.0137
|
[61] |
Hou E, Tang S, Chen C, et al. Solubility of phosphorus in subtropical forest soils as influenced by low-molecular organic acids and key soil properties[J]. Geoderma, 2018, 313: 172 − 180. doi: 10.1016/j.geoderma.2017.10.039
|
[62] |
陈立新, 梁薇薇, 段文标, 等. 3种低分子质量有机酸对温带典型林型土壤无机磷组分的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(4): 75 − 82.
|
[63] |
Huang Y, Zhao L, Keller A A. Interactions, transformations, and bioavailability of nano-copper exposed to root exudates[J]. Environmental Science and Technology, 2017, 51(17): 9774 − 9783. doi: 10.1021/acs.est.7b02523
|
[64] |
Jones D L, Dennis P G, Owen A G, et al. Organic acid behaviour in soils-misconceptions and knowledge gaps[J]. Plant and Soil, 2003, 248: 31 − 41. doi: 10.1023/A:1022304332313
|
[65] |
Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition in low-nutrient environments[J]. Plant and Soil, 2002, 245: 35 − 47. doi: 10.1023/A:1020809400075
|
[66] |
介晓磊, 李有田, 庞荣丽, 等. 低分子量有机酸对石灰性土壤磷素形态转化及有效性的影响[J]. 土壤通报, 2015, 36(6): 856 − 860.
|
[67] |
陆文龙, 王敬国, 曹一平, 等. 低分子量有机酸对土壤磷释放动力学的影响[J]. 土壤学报, 1998, 35(4): 493 − 500. doi: 10.3321/j.issn:0564-3929.1998.04.008
|
[68] |
Keiluweit M, Bougoure J J, Nico P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015, 5(6): 588 − 595. doi: 10.1038/nclimate2580
|
[69] |
Clarholm M, Skyllberg U, Rosling A. Organic acid induced release of nutrients from metal-stabilized soil organic matter-the unbutton model[J]. Soil Biology and Biochemistry, 2015, 84: 168 − 176. doi: 10.1016/j.soilbio.2015.02.019
|
[70] |
Jones D L, Nguyen C, Finlay R D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface[J]. Plant and Soil, 2009, 321: 5 − 33. doi: 10.1007/s11104-009-9925-0
|
[71] |
Zahar Haichar F, Santaella C, Heulin T, et al. Root exudates mediated interactions belowground[J]. Soil Biology and Biochemistry, 2014, 77: 69 − 80. doi: 10.1016/j.soilbio.2014.06.017
|
[72] |
Parker D R, Chaney R L, Norvell W A. In Loeppert R H, Schwab A P, Goldberg S (eds. ) Chemical equilibria models: applications to plant research[M]. In chemical equilibria and reaction models, special publication 42. Soil Science Society of America, Wisconsin, 1995.
|
[73] |
Sokolova T A. Low-molecular-weight organic acids in soils: sources, composition, concentrations, and functions: a review[J]. Eurasian Soil Science, 2020, 53(5): 580 − 594. doi: 10.1134/S1064229320050154
|
[74] |
刘 翠, 牟凤利, 王吉秀, 等. 低分子量有机酸对植物吸收和累积重金属的影响综述[J]. 江苏农业科学, 2021, 49(8): 38 − 43.
|
[75] |
Montiel-Rozas M M, Madejón E, Madejón P. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: an assessment in sand and soil conditions under different levels of contamination[J]. Environmental Pollution, 2016, 216: 273 − 281. doi: 10.1016/j.envpol.2016.05.080
|
[76] |
宋金凤, 杨金艳, 崔晓阳. 低分子有机酸/盐对复合污染土壤中Pb、Zn、As有效性的影响[J]. 水土保持学报, 2010, 24(4): 108 − 112 + 118.
|
[77] |
周鑫斌, 黄建国, 赖 凡. pH和有机酸对酸性紫色土吸附-解吸镉的影响[J]. 水土保持学报, 2007, 21(6): 139 − 142. doi: 10.3321/j.issn:1009-2242.2007.06.032
|
[78] |
花 敏, 张 笛, 姜艾伶, 等. 铁细菌培养过程中低分子有机酸钠盐对含硫酸根铁矿物形成的影响[J]. 岩石矿物学杂志, 2021, 40(4): 786 − 794. doi: 10.3969/j.issn.1000-6524.2021.04.010
|
[79] |
唐 佳, 王 艳, 伏 毅, 等. 低分子有机酸对土壤中镍的活化作用研究[J]. 安徽农业科学, 2021, 49(5): 87 − 89. doi: 10.3969/j.issn.0517-6611.2021.05.024
|
[80] |
王沛琦, 胡尊红, 胡学礼, 等. 镉胁迫对蓖麻有机酸含量及镉吸收的影响[J]. 山西农业科学, 2021, 49(7): 822 − 827. doi: 10.3969/j.issn.1002-2481.2021.07.06
|
[81] |
王 喆, 赵志西, 刘杨秋凡, 等. 砷在新疆奎屯河沉积物上的吸附及有机酸对吸附的影响[J]. 生态学杂志, 2021, 40(6): 1766 − 1774.
|
[82] |
朱艳霞, 魏幼璋, 叶正钱, 等. 有机酸在超积累植物重金属解毒机制中的作用[J]. 西北农林科技大学学报(自然科学版), 2006, 34(7): 121 − 126.
|
[83] |
傅晓萍, 豆长明, 胡少平, 等. 有机酸在植物对重金属耐性和解毒机制中的作用[J]. 植物生态学报, 2010, 34(11): 1354 − 1358. doi: 10.3773/j.issn.1005-264x.2010.11.013
|
[84] |
綦远才, 周 翠, 何欣芮, 等. 两种外源有机酸对土壤Cd形态及秋华柳Cd积累的影响[J]. 环境科学研究, 2021, 34(9): 2220 − 2227.
|
[85] |
刘桂华, 秦 松, 柴冠群, 等. 低分子有机酸对贵州黄壤龙葵吸收镉的影响[J]. 南方农业学报, 2020, 51(11): 2682 − 2689. doi: 10.3969/j.issn.2095-1191.2020.11.010
|
[86] |
刘桂华, 敖 明, 柴冠群, 等. 低分子有机酸对贵州黄壤中镉释放及形态的影响[J]. 土壤通报, 2018, 49(6): 1473 − 1479.
|