留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于知识图谱分析的沼液还田利用研究现状与发展趋势

刘银秀 聂新军 叶波 董越勇 金娟 范志斌 邢佳佳

刘银秀, 聂新军, 叶 波, 董越勇, 金 娟, 范志斌, 邢佳佳. 基于知识图谱分析的沼液还田利用研究现状与发展趋势[J]. 土壤通报, 2023, 54(1): 192 − 201 doi: 10.19336/j.cnki.trtb.2021113004
引用本文: 刘银秀, 聂新军, 叶 波, 董越勇, 金 娟, 范志斌, 邢佳佳. 基于知识图谱分析的沼液还田利用研究现状与发展趋势[J]. 土壤通报, 2023, 54(1): 192 − 201 doi: 10.19336/j.cnki.trtb.2021113004
LIU Yin-xiu, NIE Xin-jun, YE Bo, DONG Yue-yong, JIN Juan, FAN Zhi-bin, XING Jia-jia. Research of Returning Biogas Slurry to Cropland Based on Knowledge Graph Analysis and Its Development Trend[J]. Chinese Journal of Soil Science, 2023, 54(1): 192 − 201 doi: 10.19336/j.cnki.trtb.2021113004
Citation: LIU Yin-xiu, NIE Xin-jun, YE Bo, DONG Yue-yong, JIN Juan, FAN Zhi-bin, XING Jia-jia. Research of Returning Biogas Slurry to Cropland Based on Knowledge Graph Analysis and Its Development Trend[J]. Chinese Journal of Soil Science, 2023, 54(1): 192 − 201 doi: 10.19336/j.cnki.trtb.2021113004

基于知识图谱分析的沼液还田利用研究现状与发展趋势

doi: 10.19336/j.cnki.trtb.2021113004
基金项目: 2021年度浙江省重点研发计划项目(2021C03191)和2022年浙江省“三农九方”科技协作计划项目(2022SNJF005)资助
详细信息
    作者简介:

    刘银秀(1977−),女,浙江江山人,硕士研究生,高级工程师,主要从事农村能源技术推广工作。E-mail: 151429677@qq.com

    通讯作者:

    E-mail: j.xing@zafu.edu.cn

  • 中图分类号: S15

Research of Returning Biogas Slurry to Cropland Based on Knowledge Graph Analysis and Its Development Trend

  • 摘要: 畜禽养殖业的集约化和规模化发展,造成畜禽粪污产生量急剧增加。畜禽粪污处理不当可对周遭的土壤、水体、大气等造成污染,成为我国农业面源污染的主要来源之一。基于Web of Science核心合集数据库,采用文献计量学方法对此研究领域的相关文献进行分析整合。结果表明:① 全球对粪肥污染研究的重视程度越来越高,沼液作为畜禽粪污厌氧消化的主要产物,其在还田领域的发文主要集中于土壤科学、环境科学、农学3个学科;②美国、中国、德国、澳大利亚、法国等国家在沼液还田利用研究领域发文量较多,相互合作密切;①沼液还田利用领域的发文期刊主要有Agriculture Ecosystems & EnvironmentGeodermaScience of the Total Environment,其中2021年的 SCI 影响因子较高的主要期刊有Science of the Total EnvironmentGeodermaAgriculture Ecosystems & EnvironmentCatena等。沼液还田利用的未来研究趋势主要集中于沼液所携带的活性物质与菌群对土壤肥力的促进机制,以及对土传病原微生物的抑病机理等方面。
  • 图  1  近二十年前十发文学科占比(a)及文献发表趋势(b)图

    Figure  1.  The proportion of (a) the top 10 published disciplines in the past 20 years and (b) the trend chart of literature publication

    图  2  论文产出国(a)、机构(b)之间的合作

    Figure  2.  Cooperation between paper contributing countries (a) and contributing institutions (b)

    图  3  文献共被引聚类视图

    Figure  3.  View of clusters of co-cited literature

    图  4  关键词共现网络

    Figure  4.  Keywords co-occurrence network

    表  1  国家与机构的总联系强度排名前十

    Table  1.   Top 10 countries and institutions in total link strength

    排名
    Rank
    国家
    Country
    总联系强度
    Total link strength
    机构名称
    Institution
    总联系强度
    Total link strength
    1 美国 780 中国科学院 340
    2 中国 757 中国科学院大学 215
    3 德国 566 中国农业科学院 157
    4 澳大利亚 388 西北农林科技大学 84
    5 法国 341 中国农业大学 60
    6 西班牙 330 西澳大学 59
    7 荷兰 324 中国农业部 56
    8 英国 312 美国农业部 47
    9 意大利 277 康奈尔大学 46
    10 瑞士 243 吉林农业科学院 44
    下载: 导出CSV

    表  2  2000 ~ 2021 年沼液还田利用研究领域研究发文量排名TOP10 期刊

    Table  2.   Top10 journals in terms of number of papers published addressing returning biogas slurry to cropland during the 2000 - 2021

    期刊名称
    Journal
    本地引用
    TLCS
    总引用
    TGCS
    发文量
    Number of Papers
    影响因子(2021年)
    Impact Factor (In 2021)
    Soil & Tillage Research 476 4023 162 5.374
    Agriculture Ecosystems & Environment 415 4000 178 5.567
    Geoderma 414 4594 178 6.114
    Science of the Total Environment 380 3798 165 7.963
    Applied Soil Ecology 201 1809 129 4.046
    Catena 167 2021 108 5.198
    Communications in Soil Science And Plant Analysis 110 683 163 1.327
    Archives of Agronomy And Soil Science 71 665 101 3.092
    Sustainability 44 1020 106 3.251
    Agronomy-Basel 6 518 110 2.473
    下载: 导出CSV

    表  3  2000 ~ 2021年沼液还田利用研究领域研究发文量排名 TOP20 关键词

    Table  3.   Top 20 keywords in the field of returning biogas slurry to cropland research published articles during 2000 - 2021

    序号
    No.
    关键词
    Keyword
    频次
    Frequence
    序号
    No.
    关键词
    Keyword
    频次
    Frequence
    1 Nitrogen 1168 11 Growth 509
    2 Soil fertility 1047 12 Phosphorus 489
    3 Organic-matter 992 13 Microbial biomass 445
    4 Carbon 886 14 Organic-carbon 441
    5 Management 885 15 Matter 412
    6 Yield 677 16 Manure 406
    7 Fertility 667 17 Biomass 405
    8 Quality 620 18 Productivity 393
    9 Dynamics 544 19 Diversity 374
    10 Soil 519 20 Biochar 365
    下载: 导出CSV

    表  4  突现至2021年关键词(即当下研究热点)

    Table  4.   Keywords bursting to 2021 (current research hotspots)

    关键词
    Keyword
    突现强度
    Strength
    开始
    Begin
    结束
    End
    Charcoal 8.56 2010 2014
    Exchange 7.56 2010 2014
    Leaf area 7.5 2010 2019
    Cotton 6.98 2010 2014
    Biochar 6.86 2015 2021
    PCR 6.67 2010 2014
    Fruit quality 6.64 2015 2021
    Bacillus thuringiensis 6.47 2010 2019
    Fungal community 6.35 2015 2021
    Saturation 5.54 2010 2014
    下载: 导出CSV
  • [1] 孙国峰, 王 鑫, 盛 婧, 等. 长期粪肥还田条件下稻米品质及氮肥利用率[J]. 农业环境科学学报, 2021, 40(11): 2521 − 2527. doi: 10.11654/jaes.2021-1023
    [2] 王明利. 改革开放四十年我国畜牧业发展: 成就、经验及未来趋势[J]. 农业经济问题, 2018, 08(11): 60 − 70.
    [3] Jin S, Zhang B, Wu B, et al. Decoupling livestock and crop production at the household level in China[J]. Nature Sustainability, 2021, 4(1): 48 − 55. doi: 10.1038/s41893-020-00596-0
    [4] Bai Z, Ma W, Ma L, et al. China's livestock transition: Driving forces, impacts, and consequences[J]. Science Advances, 2018, 4(7): 8534. doi: 10.1126/sciadv.aar8534
    [5] Park J, Kang T, Heo Y, et al. Evaluation of short-term exposure levels on ammonia and hydrogen sulfide during manure-handling processes at livestock farms[J]. Safety and Health at Work, 2020, 11(1): 109 − 117. doi: 10.1016/j.shaw.2019.12.007
    [6] 吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 39(6): 1168 − 1176.
    [7] 吴根义, 廖新俤, 贺德春, 等. 我国畜禽养殖污染防治现状及对策[J]. 农业环境科学学报, 2014, 33(7): 1261 − 1264. doi: 10.11654/jaes.2014.07.001
    [8] Chen Y C, Yang Z M, Chen Q H, et al. An overview on disposal of anaerobic digestate for large scale biogas engineering[J]. China Biogas, 2010, 28(1): 14 − 20.
    [9] 张鹏娟, 曹运红. 浅谈沼液的综合利用技术[J]. 农业技术与装备, 2011, 24(2): 79 − 80.
    [10] 张国治, 吴少斌, 王焕玲, 等. 大中型沼气工程沼渣沼液利用意愿现状调研及问题分析[J]. 中国沼气, 2010, 28(1): 21 − 24. doi: 10.3969/j.issn.1000-1166.2010.01.005
    [11] 陈保冬, 赵方杰, 张 莘, 等. 土壤生物与土壤污染研究前沿与展望[J]. 生态学报, 2015, 35(20): 6604 − 6613.
    [12] Tyrrel S F, Quinton J N. Overland flow transport of pathogens from agricultural land receiving faecal wastes[J]. Journal of Applied Microbiology, 2003, 94: 87 − 93. doi: 10.1046/j.1365-2672.94.s1.10.x
    [13] Beattie R E, Bandla A, Swarup S, et al. Freshwater sediment microbial communities are not resilient to disturbance from agricultural land runoff[J]. Frontiers in Microbiology, 2020, 15(11): 539921.
    [14] Rietz D N, Haynes R J. Effects of irrigation-induced salinity and sodicity on soil microbial activity[J]. Soil Biology and Biochemistry, 2003, 35(6): 845 − 854. doi: 10.1016/S0038-0717(03)00125-1
    [15] Pimentel D, Hepperly P, Hanson J, et al. Environmental, energetic, and economic comparisons of organic and conventional farming systems[J]. Bioscience, 2005, 55(7): 573 − 582. doi: 10.1641/0006-3568(2005)055[0573:EEAECO]2.0.CO;2
    [16] Jones D L, Rousk J, Edwards J G, et al. Biochar-mediated changes in soil quality and plant growth in a three year field trial[J]. Soil Biology and Biochemistry, 2012, 45: 113 − 124. doi: 10.1016/j.soilbio.2011.10.012
    [17] Du Z, Xiao Y, Qi X, et al. Peanut-shell biochar and biogas slurry improve soil properties in the North China Plain: a four-year field study[J]. Scientific Reports, 2018, 8(1): 1 − 9.
    [18] Liu C, Chen Y, Li X, et al. Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts[J]. Environmental Pollution, 2020, 258: 113652. doi: 10.1016/j.envpol.2019.113652
    [19] Niyungeko C, Liang X, Liu C, et al. Effect of biogas slurry application rate on colloidal phosphorus leaching in paddy soil: a column study[J]. Geoderma, 2018, 325(1): 117 − 124.
    [20] Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 1985, 17(6): 837 − 842. doi: 10.1016/0038-0717(85)90144-0
    [21] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1−2): 248 − 254.
    [22] Mäder P, Fliessbach A, Dubois D, et al. Soil fertility and biodiversity in organic farming[J]. Science, 2002, 296(5573): 1694 − 1697. doi: 10.1126/science.1071148
    [23] Lehmann J, Steiner C, Nehls T, et al. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon basin: fertilizer, manure and charcoal amendments[J]. Plant and Soil, 2003, 249(2): 343 − 357. doi: 10.1023/A:1022833116184
    [24] Garg R N, Pathak H, Das D K, et al. Use of flyash and biogas slurry for improving wheat yield and physical properties of soil[J]. Environmental Monitoring and Assessment, 2005, 107(1): 1 − 9.
    [25] Sänger A, Geisseler D, Ludwig B. Effects of moisture and temperature on greenhouse gas emissions and C and N leaching losses in soil treated with biogas slurry[J]. Biology and Fertility of Soils, 2011, 47(3): 249 − 259. doi: 10.1007/s00374-010-0528-y
    [26] Tang Y, Luo L, Carswell A, et al. Changes in soil organic carbon status and microbial community structure following biogas slurry application in a wheat-rice rotation[J]. Science of the Total Environment, 2021, 757(25): 143786.
    [27] Xu M, Xian Y, Wu J, et al. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years[J]. Journal of Soil and Sediments, 2019, 19(5): 2534 − 2542. doi: 10.1007/s11368-019-02258-x
    [28] Zirkler D, Peters A, Kaupenjohann M. Elemental composition of biogas residues: Variability and alteration during anaerobic digestion[J]. Biomass and Bioenergy, 2014, 67: 89 − 98. doi: 10.1016/j.biombioe.2014.04.021
    [29] Gálvez A, Sinicco T, Cayuela M L, et al. Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties[J]. Agriculture Ecosystems and Environment, 2012, 160(1): 3 − 4.
    [30] Terhoeven U T, Scheller E, Raubuch M, et al. CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley[J]. Applied Soil Ecology, 2009, 42(3): 297 − 302. doi: 10.1016/j.apsoil.2009.05.012
    [31] Abubaker J, Risberg K, Pell M. Biogas residues as fertilizers–Effects on wheat growth and soil microbial activities[J]. Applied Energy, 2012, 99: 126 − 134. doi: 10.1016/j.apenergy.2012.04.050
    [32] Surendra K C, Takara D, Hashimoto A, et al. Biogas as a sustainable energy source for developing countries: Opportunities and challenges[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 846 − 859. doi: 10.1016/j.rser.2013.12.015
    [33] Weiland P. Biogas production: Current state and perspectives[J]. Applied Microbiology and Biotechnology, 2010, 85(4): 849 − 860. doi: 10.1007/s00253-009-2246-7
    [34] Garg R N, Pathak D S, Das D, et al. Use of flyash and biogas slurry for improving wheat yield and physical properties of soil[J]. Environmental Monitoring and Assessment, 2005, 107: 1 − 9. doi: 10.1007/s10661-005-2021-x
    [35] Singh K, Suman A, Singh P, et al. Improving quality of sugarcane-growing soils by organic amendments under subtropical climatic conditions of India[J]. Biology and Fertility of Soils, 2007, 44(2): 367 − 376. doi: 10.1007/s00374-007-0216-8
    [36] Li H, Feng K. Life cycle assessment of the environmental impacts and energy efficiency of an integration of sludge anaerobic digestion and pyrolysis[J]. Journal of Cleaner Production, 2018, 195(10): 476 − 485.
    [37] Mills N, Pearce P, Farrow J, et al. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies[J]. Waste Management, 2014, 34(1): 185 − 195. doi: 10.1016/j.wasman.2013.08.024
    [38] Wang S N, Yuan R F, Chen H L, et al. Effect of sulfonamides on the dissolved organic matter fluorescence in biogas slurry during anaerobic fermentation according to the PARAFAC analysis[J]. Process Safety and Environmental Protection, 2020, 144: 253 − 262. doi: 10.1016/j.psep.2020.07.033
    [39] Islam S, Rahman M, Islam M S, et al. Effect of nitrogen level on aromatic rice varieties and soil fertility status[J]. International Journal of Sustainable Crop production, 2008, 3(3): 49 − 54.
    [40] Cheng J B, Chen Y C, He T B, et al. Soil nitrogen leaching decreases as biogas slurry DOC/N ratio increases[J]. Applied Soil Ecology, 2016, 111: 105 − 113.
    [41] Yu F B, Luo X P, Song C F, et al. Concentrated biogas slurry enhanced soil fertility and tomato quality[J]. Soil and Plant Science, 2010, 60(3): 262 − 268.
    [42] Tang Y F, Luo L M, Carswell A, et al. Changes in soil organic carbon status and microbial community structure following biogas slurry application in a wheat-rice rotation[J]. Science of the Total Environment, 2020, 757(25): 143786.
    [43] Stumpe B, Werner S, Jung R, et al. Organic carbon dynamics and enzyme activities in agricultural soils amended with biogas slurry, liquid manure and sewage sludge[J]. Agricultural Sciences, 2012, 3(1): 104 − 113. doi: 10.4236/as.2012.31014
    [44] Du H Y, Gao W X, Li J J, et al. Effects of digested biogas slurry applicationmixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain[J]. Agricultural Water Management, 2019, 213(1): 882 − 893.
    [45] Cao Y, Wang J D, Chang Z Z, et al. The fate of antagonistic microorganisms and antimicrobial substances during anaerobic digestion of pig and dairy manure[J]. Bioresource Technology, 2013, 136: 664 − 671. doi: 10.1016/j.biortech.2013.01.052
    [46] Jothi G, Pugalendhi S, Poornima K, et al. Management of root-knot nematode in tomato Lycopersicon esculentum, Mill., with biogas slurry[J]. Bioresource Technology, 2003, 89(2): 169 − 170. doi: 10.1016/S0960-8524(03)00047-6
    [47] Cao Y, Wang J D, Wu H S, et al. Soil chemical and microbial responses to biogas slurry amendment and its effect on Fusarium wilt suppression[J]. Applied Soil Ecology, 2016, 107: 116 − 123. doi: 10.1016/j.apsoil.2016.05.010
    [48] Goberna M, Podmirseg S M, Waldhuber S, et al. Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure[J]. Applied Soil Ecology, 2011, 49: 18 − 25. doi: 10.1016/j.apsoil.2011.07.007
    [49] Bagge E, Sahlstroem L, Albihn A. The effect of hygienic treatment on the microbial flora of biowaste at biogas plants[J]. Water Research, 2005, 39(20): 4879 − 4886. doi: 10.1016/j.watres.2005.03.016
    [50] Xing J J, Xiu J, Wang H Z, et al. The legacy of bacterial invasions on soil native communities[J]. Environmental Microbiology, 2021, 23(2): 669 − 681. doi: 10.1111/1462-2920.15086
    [51] Lourenço K S, Suleiman A K A, Pijl A, et al. Resilience of the resident soil microbiome to organic and inorganic amendment disturbances and to temporary bacterial invasion[J]. Microbiome, 2018, 6(1): 1 − 12.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  81
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 录用日期:  2022-04-27
  • 修回日期:  2022-04-18
  • 网络出版日期:  2023-02-02
  • 刊出日期:  2023-02-06

目录

    /

    返回文章
    返回