Effects of Chemical Fertilizer Substituted by Biogas Slurry on Aggregates and Associated Organic Carbon Characteristics in Fluvo-aquic Soil under Total Straw Incorporation
-
摘要:
目的 通过探究黄淮海平原秸秆全量还田条件下长期沼液替代化肥对潮土水稳性团聚体及结合有机碳影响,以期为改善土壤结构,增加土壤有机碳积累及推动种养结合循环农业发展提供科技支撑。 方法 采集长期持续进行不同沼液替代化肥处理(不施肥对照,CK;单一施用沼液,BS;单一施用化肥,CF;以及沼液半量替代化肥,BSCF)的表层(0 ~ 20 cm)土壤,利用湿筛法分离水稳性团聚体并测定不同粒径团聚结合有机碳分布变化情况。 结果 相较于对照,各施肥处理均能显著增加了外源有机碳投入,增加水稳性大团聚体质量组成比例,提高团聚体稳定性,其中沼液半量替代化肥处理 > 0.25 mm粒径水稳性团聚体质量组成比例提升效果最为明显,平均重量直径和几何平均直径最高,而团聚体破碎率和分形维数最低。不同处理团聚体结合有机碳含量随粒径增加表现出先升高后降低的趋势,其中以0.25 ~ 2 mm粒径最高。同时各施肥处理均增加各粒径团聚体结合有机碳含量,显著提高 > 0.25 mm粒径大团聚体结合有机碳贡献率,降低 < 0.053 mm粒径粘粉粒结合有机碳的贡献率。 结论 在黄淮海平原秸秆全量还田条件下通过沼液半量替代化肥不仅有利于水稳性大团聚体的形成和团聚体稳定性的提高,达到改善土壤结构的目的,而且能够调控各粒径团聚体结合有机碳贡献率,达到平衡土壤有机碳的维持和养分的释放目的。 Abstract:Objective To explore the effects of chemical fertilizer substituted by biogas slurry on characteristics and associated organic carbon (C) of water-stable aggregates in fluvo-aquic soil based on total straw returning, field experiment was conducted to improve soil structure and organic C sequestration as well as the combination of farming and animal husbandry. Method Soil samples from different treatments (no fertilizer control, CK; biogas slurry application alone, BS; chemical fertilizer alone, CF; half substitution chemical fertilizer by biogas slurry, BSCF) were collected and separated by wet sieving method and corresponding aggregate associated organic C was determined. Result All fertilization treatments significantly increased exogenous organic C inputs and mass composition proportion of water-stable macro-aggregates and improved aggregates stability. The greatest WR0.25, mean weight diameter (MWD) and geometric mean diameter (GMD) were obtained in the treatment of half substitution chemical fertilizer by biogas slurry, which also acquired the lowest percentage of aggregate destruction (PAD) and fractal dimension (D). Aggregate associated organic C contents increased all firstly and then decreased with size increasing and reached the highest in the particle size of 0.25-2 mm. Meanwhile, all fertilization treatments increased aggregate associated organic C contents of different fractions, and organic C contribution rate of aggregates more than 0.25mm at the expense of reducing contribution rate of soil particles less than 0.053 mm. Conclusion Chemical fertilizer substituted by biogas slurry not only improved water-stable macro-aggregates formation and stabilization, but also balances soil organic C maintenance and nutrient release by adjusting organic C contribution rate with different aggregate fractions. -
表 1 不同沼液替代化肥处理氮磷钾和有机碳投入量
Table 1. Amounts of total nitrogen, phosphorus, potassium and organic carbon input provided by different treatments with chemical fertilizer substituted by biogas slurry
处理
Treatment沼液
Biogas slurry化肥
Chemical fertilizer施用量
Application amount
(m3 hm−2)有机碳投入
Organic carbon input
(kg hm−2)N
(kg hm−2)P2O5
(kg hm−2)K2O
(kg hm−2)N
(kg hm−2)P2O5
(kg hm−2)K2O
(kg hm−2)CK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CF 0.00 0.00 0.00 0.00 0.00 240.00 120.00 90.00 BS 138.00 189.06 240.00 64.10 53.40 0.00 55.90 36.60 BSCF 69.00 94.53 120.00 32.05 26.70 120.00 87.95 63.00 表 2 不同沼液替代化肥处理作物秸秆还田量
Table 2. Amounts of crop straw incorporation in response to chemical fertilizer substituted by biogas slurry
处理
Treatment秸秆类型
Straw type年份
Year2015 ~ 2016
(t hm−2)2016 ~ 2017
(t hm−2)2017 ~ 2018
(t hm−2)2018 ~ 2019
(t hm−2)2019 ~ 2020
(t hm−2)2020 ~ 2021
(t hm−2)CK 小麦秸秆 6.15 ± 0.24 5.85 ± 0.30 5.8 ± 0.40 5.73 ± 0.12 5.7 ± 0.44 5.54 ± 0.27 玉米秸秆 15.75 ± 1.02 15.9 ± 0.94 15.16 ± 0.80 15.2 ± 0.82 15.04 ± 0.65 14.3 ± 1.09 CF 小麦秸秆 7.52 ± 0.73 7.60 ± 0.99 7.26 ± 0.69 7.13 ± 0.57 7.82 ± 0.90 7.47 ± 0.75 玉米秸秆 20.25 ± 1.38 20.08 ± 1.26 20.56 ± 1.20 21.88 ± 2.07 20.04 ± 1.85 18.92 ± 1.40 BS 小麦秸秆 7.40 ± 0.71 7.42 ± 0.59 7.14 ± 0.57 7.08 ± 0.55 7.61 ± 0.87 7.35 ± 0.61 玉米秸秆 20.02 ± 2.07 19.89 ± 1.84 20.04 ± 1.90 20.86 ± 2.07 19.87 ± 1.65 18.78 ± 1.82 BSCF 小麦秸秆 7.65 ± 0.71 7.68 ± 0.64 7.3 ± 0.70 7.15 ± 0.61 7.88 ± 0.55 7.49 ± 0.70 玉米秸秆 20.32 ± 2.07 20.14 ± 1.56 21.08 ± 1.85 22.00 ± 2.01 20.14 ± 1.80 19.13 ± 1.82 表 3 不同沼液替代化肥处理外源有机碳投入量
Table 3. Amounts of exogenous organic carbon input in response to chemical fertilizer substituted by biogas slurry
处理
Treatment秸秆有机碳投入量
Straw organic carbon input
(t hm−2)沼液有机碳投入量
Biogas slurry organic carbon input
(t hm−2)有机碳总投入量
Total organic carbon input
(t hm−2)CK 53.60 ± 1.98 a 0.00 53.60 ± 1.98 a CF 70.77 ± 2.24 b 0.00 70.77 ± 2.24 b BS 69.47 ± 1.51 b 2.27 71.74 ± 1.51 b BSCF 71.38 ± 1.03 b 1.13 72.51 ± 1.03 b 表 4 不同沼液替代化肥处理水稳性团聚体质量组成比例
Table 4. Mass proportion of each water-stable aggregate fraction in response to chemical fertilizer substituted by biogas slurry
处理
Treatment> 2 mm
(%)0.25 ~ 2 mm
(%)0.053 ~ 0.25 mm
(%)< 0.053 mm
(%)WR0.25
(%)CK 1.82 ± 0.38 c 1.53 ± 0.10 d 5.11 ± 0.20 c 91.54 ± 0.53 a 3.35 ± 0.45 c CF 6.97 ± 1.01 b 8.64 ± 0.57 b 11.55 ± 1.97 a 72.84 ± 2.13 c 15.61 ± 1.07 b BS 8.39 ± 0.81 ab 6.68 ± 0.44 c 7.87 ± 1.29 b 77.06 ± 1.95 b 15.07 ± 0.92 b BSCF 8.44 ± 0.82 a 10.87 ± 1.47 a 7.59 ± 1.43 bc 73.09 ± 2.40 c 19.32 ± 1.41 a 注:同一列不同小写字母表示处理间差异显著(P<0.05)。 表 5 不同沼液替代化肥处理各水稳性团聚体组分结合有机碳含量
Table 5. Concentration of organic carbon within water-stable aggregates in response to chemical fertilizer substituted by biogas slurry
处理
Treatment> 2 mm
(g kg−1)0.25 ~ 2 mm
(g kg−1)0.053 ~ 0.25 mm
(g kg−1)< 0.053 mm
(g kg−1)CK 6.87 ± 0.72 b 15.50 ± 1.44 c 6.00 ± 0.73 b 1.94 ± 0.61 c CF 9.90 ± 0.86 a 18.30 ± 0.94 b 13.26 ± 1.58 a 4.88 ± 0.97 b BS 11.33 ± 1.56 a 25.53 ± 1.91 a 15.11 ± 2.88 a 8.49 ± 1.64 a BSCF 9.89 ± 0.64 a 18.35 ± 1.47 b 15.24 + 4.58 a 7.43 + 1.49 a 注:同一列不同小写字母表示处理间差异显著(P < 0.05)。 -
[1] 孙 雪, 张玉铭, 张丽娟, 等. 长期添加外源有机物料对华北农田土壤团聚体有机碳组分的影响[J]. 中国生态农业学报, 2021, 29(8): 1384 − 1396. [2] 张维理, Kolbe H, 张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020, 53(2): 317 − 331. doi: 10.3864/j.issn.0578-1752.2020.02.007 [3] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623 − 1627. doi: 10.1126/science.1097396 [4] 武 均, 蔡立群, 张仁陟, 等. 耕作措施对旱作农田土壤颗粒态有机碳的影响[J]. 中国生态农业学报, 2018, 26(5): 728 − 736. [5] Six J, Paustian K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool[J]. Soil Biology and Biochemistry, 2014, 68: A4 − A9. doi: 10.1016/j.soilbio.2013.06.014 [6] Fan R, Du J J, Liang A Z, et al. Carbon sequestration in aggregates from native and cultivated soils as affected by soil stoichiometry[J]. Biology and Fertility of Soils, 2020, 56: 1109 − 20. doi: 10.1007/s00374-020-01489-2 [7] Ye G P, Lin Y X, Liu D Y, et al. Long-term application of manure over plant residues mitigates acidification, builds soil organic carbon and shifts prokaryotic diversity in acidic Ultisols[J]. Applied Soil Ecology, 2018, 133: 24 − 33. [8] 田慎重, 王 瑜, 李 娜, 等. 耕作方式和秸秆还田对华北地区农田土壤水稳性团聚体分布及稳定性的影响[J]. 生态学报, 2013, 33(22): 7116 − 7124. [9] Abiven S, Menasseri S, Chenu C, et al. The effects of organic inputs over time on soil aggregate stability – a literature analysis[J]. Soil Biology & Biochemistry, 2009, 41(1): 1 − 12. [10] 李江涛, 钟晓兰, 赵其国. 畜禽粪便施用对稻麦轮作土壤质量的影响[J]. 生态学报, 2011, 31(10): 2837 − 2845. [11] 韩明钊, 赵雨森, 翟国庆, 等. 有机物料添加对黑土团聚体稳定性及有机碳影响[J]. 东北林业大学学报, 2021, 49(5): 109 − 114. doi: 10.3969/j.issn.1000-5382.2021.05.019 [12] Zhu L X, Zhang F L, Li L L, et al. Soil C and aggregate stability were promoted by bio-fertilizer on the north China plain[J]. Journal of Soil Science and Plant Nutrition, 2021, 21: 2355 − 2363. doi: 10.1007/s42729-021-00527-8 [13] 张 贺, 杨 静, 周吉祥, 等. 连续施用土壤改良剂对砂质潮土团聚体及作物产量的影响[J]. 植物营养与肥料学报, 2021, 27(5): 791 − 801. doi: 10.11674/zwyf.20576 [14] 徐用兵. 华北潮土土壤质量演变及不同土地利用方式下的质量评价[D]. 北京: 中国农业科学院, 2021. [15] Wang W G, Zhang Y H, Liu Y, et al. Managing liquid digestate to support the sustainable biogas industry in China: Maximizing biogas linked agroecosystem balance[J]. GCB Bioenergy, 2021, 13(6): 880 − 892. doi: 10.1111/gcbb.12823 [16] Niyungeko C, Liang X Q, Liu C L, et al. Effect of biogas slurry application on soil nutrients, phosphomonoesterase activities, and phosphorus species distribution[J]. Journal of Soils and Sediments, 2020, 20(2): 900 − 910. [17] Xu M, Xian Y, Wu J, et al. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years[J]. Journal of Soils and Sediments, 2019, 19(5): 2534 − 2542. doi: 10.1007/s11368-019-02258-x [18] Du Z J, Chen X M, Qi X B, et al. The effects of biochar and hoggery biogas slurry on fluvo-aquic soil physical and hydraulic properties: a field study of four consecutive wheat–maize rotations[J]. Journal of Soils and Sediments, 2016, 16(8): 2050 − 2058. doi: 10.1007/s11368-016-1402-9 [19] 魏彬萌, 韩霁昌, 王欢元, 等. 灌施沼液比例对石灰性土壤性质和辣椒生长的影响[J]. 中国土壤与肥料, 2017, 2: 42 − 47. doi: 10.11838/sfsc.20170207 [20] Zheng X B, Fan J B, Cui J, et al. Effects of biogas slurry application on peanut yield, soil nutrients, carbon storage, and microbial activity in an Ultisol soil in southern China[J]. Journal of soil & sediments, 2016, 16(2): 449 − 460. [21] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. [22] Kemper W D, Rosenau R C. Aggregate stability and size distribution[M]. Madison: American Society of Agronomy-Soil Science Society of America, 1986. [23] Bosch-Serra á D, Yagüe M R, Poch R M, et al. Aggregate strength in calcareous soil fertilized with pig slurries[J]. European Journal of Soil Science, 2017, 68(4): 449 − 461. doi: 10.1111/ejss.12438 [24] Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362 − 369. doi: 10.2136/sssaj1992.03615995005600020005x [25] Six J, Paustian K, Elliott E T, et al. Soil structure and organic matterⅠ. distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64(2): 681 − 689. doi: 10.2136/sssaj2000.642681x [26] Fei C, Zhang S R, Li J L, et al. Partial substitution of rice husk for manure in greenhouse vegetable fields: Insight from soil carbon stock and aggregate stability[J]. Land Degradation & Development, 2021, 32(14): 3962 − 3972. [27] Zhou M, Liu C Z, Wang J, et al. Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China[J]. Scientific Reports, 2020, 10(1): 265. doi: 10.1038/s41598-019-57193-1 [28] 郑 莉. 沼液施用对黄淮海平原盐化潮土土壤结构稳定性的影响[D]. 北京: 中国农业科学院, 2020. [29] Abubaker J, Risberg K, Joensson E, et al. Short-term effects of biogas digestates and pig slurry application on soil microbial activity[J]. Applied & Environmental Soil Science, 2015, 1: 1 − 15. [30] Yu H Y, Ding W X, Luo J F, et al. Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil[J]. Biology and Fertility of Soils, 2012, 48(3): 325 − 336. doi: 10.1007/s00374-011-0629-2 [31] Meng Q F, Sun Y T, Zhao J, et al. Distribution of carbon and nitrogen in water-stable aggregates and soil stability under long-term manure application in solonetzic soils of the Songnen plain, northeast China[J]. Journal of soil & sediments, 2014, 14(6): 1041 − 1049. [32] Karami A, Homaee M, Afzalinia S, et al. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties[J]. Agriculture Ecosystems & Environment, 2012, 148(4): 22 − 28. [33] 刘红梅, 李睿颖, 高晶晶, 等. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展[J]. 生态环境学报, 2020, 29(6): 1277 − 1284. [34] 张秀芝, 李 强, 高洪军, 等. 长期施肥对黑土水稳性团聚体稳定性及有机碳分布的影响[J]. 中国农业科学, 2020, 53(6): 1214 − 1223. doi: 10.3864/j.issn.0578-1752.2020.06.013 [35] Chen Z M, Wang Q, Ma J W, et al. Soil microbial activity and community composition as influenced by application of pig biogas slurry in paddy field in southeast China[J]. Paddy and Water Environment, 2020, 18(1): 15 − 25. doi: 10.1007/s10333-019-00761-y [36] Greenberg I, Kaiser M, Polifka S, et al. The effect of biochar with biogas digestate or mineral fertilizer on fertility, aggregation and organic carbon content of a sandy soil: Results of a temperate field experiment[J]. Journal of Plant Nutrition and Soil Science, 2019, 182(5): 824 − 835. doi: 10.1002/jpln.201800496 [37] Garcia-Franco N, Albaladejo J, Almagro M, et al. Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a Mediterranean agroecosystem[J]. Soil & Tillage Research, 2015, 153: 66 − 75. [38] Dai H C, Chen Y Q, Liu K C, et al. Water-stable aggregates and carbon accumulation in barren sandy soil depend on organic amendment method: A three-year field study[J]. Journal of Cleaner Production, 2019, 212: 393 − 400. doi: 10.1016/j.jclepro.2018.12.013 [39] Jiang M B, Wang X H, Liusui Y H, et al. Variation of soil aggregation and intra-aggregate carbon by long-term fertilization with aggregate formation in a grey desert soil[J]. Catena, 2017, 149: 437 − 445. doi: 10.1016/j.catena.2016.10.021 [40] 耿瑞霖, 郁红艳, 丁维新, 等. 有机无机肥长期施用对潮土团聚体及其有机碳含量的影响[J]. 土壤, 2010, 42(6): 908 − 914. [41] 梁 尧, 苑亚茹, 韩晓增, 等. 化肥配施不同剂量有机肥对黑土团聚体中有机碳与腐殖酸分布的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1586 − 1594. doi: 10.11674/zwyf.15453 [42] 曹彬彬, 李雨诺, 朱熠辉, 等. 添加秸秆对长期不同碳氮管理土壤各粒级团聚体激发效应的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(5): 56 − 64. [43] Tian J, Pausch J, Yu G R, et al. Aggregate size and their disruption affect 14C-labeled glucose mineralization and priming effect[J]. Applied Soil Ecology, 2015, 90: 1 − 10. doi: 10.1016/j.apsoil.2015.01.014 [44] Wei X R, Li X Z, Jia X X, et al. Accumulation of soil organic carbon in aggregates after afforestation on abandoned farmland[J]. Biology and Fertility of Soils, 2013, 49(6): 637 − 646. doi: 10.1007/s00374-012-0754-6 [45] 章征程, 林启美, 李谟志, 等. 耕作对河套黄灌区典型盐碱土水稳定性团聚体及有机碳和全氮含量的影响[J]. 南京农业大学学报, 2018, 41(6): 1085 − 1092. doi: 10.7685/jnau.201807005 -