Influence of Different Vegetation Types on Soil Microbial Characteristics of Typical Forest Land in Yulin Sandy Area
-
摘要:
目的 掌握榆林沙区典型林地土壤微生物特征,明确地上植被对土壤微生物群落结构的影响。 方法 采集榆林沙区四种林分类型土壤,分析其土壤微生物群落结构。 结果 测序共产生有效操作分类单元(OTU)15,509个,各林分间OTU及各类多样性指数没有显著性差异。优势菌种及其丰度土层间变化较大,但林分间优势细菌种一致,丰度排名前五的分别是变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、厚壁菌门(Firmicutes)和绿弯菌门(Chloroflexi);樟子松、油松林下土壤中,酸杆菌门所占比例最大、分别达到22.32%和29.02%,而在沙柳和小叶锦鸡儿林下土壤中,变形菌门又成为优势菌,比例占到27.64%和28.51%。变形菌门和放线菌门在灌木林土壤中所占比例要高于乔木。 结论 虽然各优势种丰度在林分间略有差别,但差异不显著(P < 0.05)。说明在一定区域内微生物群落结构复杂程度是受土壤本底的影响,不同季节或者土壤温度、湿度的变化对微生物群落结构的影响在一段时间后消除,群落结构归于稳定。 Abstract:Objective Soil microorganisms play a very important role in reflecting the influence of above-ground vegetation on soil, so the community structure of microorganism is needed to be clarified in soil. Method the microbial community structures were analyzed in soils of 4 stands in Yulin Sand Area. Result The results showed that Sequencing yielded a total of 15,509 effective operational taxonomic units (OTU) and apparent differences were not observed from the OTUs among stands or the diversity indicators of each unit. Dominant strain species presented large fluctuations in different soil layers, while converged among different stands. Their abundances varied considerably in different soil layers and the top-five dominant species included Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, and Chloroflexi. In the forest soils of P.sylvestris and P.tabulaeformis, Acidobacteria’s proportion maximized at 22.32% and 29.02% separately. In the forest soils of S.psammophila and C.microphylla, Proteobacteria became dominant and accounted for 27.64% and 28.51%, respectively. Proteobacteria and Actinobacteria owned higher proportions in shrub forest soils than that in arboreal forest soils. Conclusion Despite of the slight abundance differences of dominant species among different stands, the differences were not significant (P < 0.05).The insignificant difference between forest stands showed that the microbial community structure in a certain area was more affected by the soil background. The influence of different seasons or changes in soil temperature and humidity on the microbial community structure will be eliminated after a period of time, and the community structure will be stable. -
Key words:
- Yulin Sand Area /
- Soil microorganisms /
- Community structure
-
表 1 实验样地植株参数调查
Table 1. Parameters of experimental plots
林分类型
Vegetation type样地编号
Plot No面积
Area坡向
Aspect坡度(℃)
Slope林分密度(N hm−2)
Density郁闭度(%)
Coverage平均株高(m)
Height平均胸径(cm)
Diameter樟子松 ZZS1 20 × 20 m 西北 6 975 71 14.40 ± 3.36 16.33 ± 5.05 ZZS2 20 × 20 m 北 9 1050 70 13.94 ± 1.71 10.80 ± 2.86 ZZS2 20 × 20 m 北 7 1025 76 14.28 ± 1.33 12.51 ± 2.37 油松 YS1 20 × 20 m 北 3 850 82 6.60 ± 0.81 12.32 ± 3.11 YS2 20 × 20 m 东北 4 950 69 6.20 ± 0.57 13.91 ± 1.52 YS3 20 × 20 m 北 3 1025 73 5.94 ± 0.63 11.74 ± 2.20 小叶锦鸡儿 XJ1 10 × 10 m 北 2 61 1.77 ± 0.21 XJ2 10 × 10 m 北 1 50 1.49 ± 0.18 XJ3 10 × 10 m 北 2 55 1.91 ± 0.27 沙柳 SL1 10 × 10 m 北 1 88 2.55 ± 0.45 SL2 10 × 10 m 北 1 73 2.71 ± 0.39 SL3 10 × 10 m 北 3 75 2.26 ± 0.31 表 2 样品操作分类单元(OTU)统计
Table 2. OTU statistics of sample
样品号
Samples No最终标记
Sequence操作分类单元
OTUs沙柳 0 ~ 10 cm 35,638 5,663 沙柳 10 ~ 20 cm 34,153 4,315 沙柳 20 ~ 40 cm 42,241 3,928 小叶锦鸡儿 0 ~ 10 cm 26,986 4,888 小叶锦鸡儿 10 ~ 20 cm 31,517 4,332 小叶锦鸡儿 20 ~ 40 cm 32,073 2,791 油松 0 ~ 10 cm 40,802 5,557 油松 10 ~ 20 cm 31,606 4,290 油松 20 ~ 40 cm 29,581 3,269 樟子松 0 ~ 10 cm 42,957 6,491 樟子松 10 ~ 20 cm 32,182 4,056 樟子松 20 ~ 40 cm 34,398 4,561 表 3 样品Alpha多样性
Table 3. Alpha-diversity of sample
土样
SampleChao1 多样性指数
Chao1 diversity覆盖率
Good’s coverage观察物种
Species香农-维纳指数
Shannon-Wiener沙柳 0 ~ 10 cm 8493.142 0.907 4971 10.297 樟子松 0 ~ 10 cm 8265.922 0.905 5186 10.282 小叶锦鸡儿 0 ~ 10 cm 7896.818 0.910 4888 10.190 油松 0 ~ 10 cm 7643.797 0.916 4596 10.215 樟子松 20 ~ 40 cm 7401.609 0.921 4008 9.294 小叶锦鸡儿 10 ~ 20 cm 6912.480 0.925 4008 9.213 樟子松 10 ~ 20 cm 6841.950 0.928 3704 9.067 油松 10 ~ 20 cm 6486.636 0.931 3979 9.696 沙柳 10 ~ 20 cm 5960.680 0.936 3902 9.718 沙柳 20 ~ 40 cm 4616.289 0.951 3263 8.228 油松 20 ~ 40 cm 4562.760 0.952 3142 8.763 小叶锦鸡儿 20 ~ 40 cm 3582.637 0.963 2612 7.666 表 4 不同林分微生物Alpha多样性指数
Table 4. Sample Alpha-diversity of different vegetations
林分
Vegetation typeChao1多样性指数
Chao1 diversity覆盖率
Good’s coverage香农维纳指数
Shannon-Wiener操作分类单元
OTUs樟子松 P. sylvestris 7503.160 ± 414.189 a 0.918 ± 0.007 a 9.48 ± 0.37 a 5036 ± 742 a 小叶锦鸡儿 C. microphylla 6130.645 ± 1305.308 a 0.933 ± 0.016 a 8.68 ± 0.73 a 4004 ± 627 a 沙柳 S. cheilophila. 6356.704 ± 1136.533 a 0.931 ± 0.013 a 9.12 ± 0.61 a 4635 ± 526 a 油松 P. tabulaeformis, 6231.064 ± 898.552 a 0.933 ± 0.010 a 9.25 ± 0.42 a 4372 ± 662 a 注:同列不同字母间差异显著 表 5 加权后样本间UniFrac距离矩阵
Table 5. Weighted unifrac distance matrix
XJ1 ZZS1 YS2 YS3 SL3 XJ3 YS1 SL1 ZZS2 ZZS3 SL2 XJ2 XJ1 0.000 ZZS1 0.381 0.000 YS2 0.272 0.282 0.000 YS3 0.317 0.339 0.140 0.000 SL3 0.349 0.368 0.195 0.126 0.000 XJ3 0.352 0.404 0.229 0.153 0.086 0.000 YS1 0.139 0.412 0.281 0.333 0.371 0.370 0.000 SL1 0.239 0.233 0.205 0.273 0.297 0.339 0.283 0.000 ZZS2 0.380 0.282 0.248 0.275 0.319 0.354 0.408 0.233 0.000 ZZS3 0.272 0.313 0.133 0.142 0.206 0.230 0.298 0.236 0.224 0.000 SL2 0.366 0.238 0.221 0.257 0.279 0.325 0.403 0.186 0.166 0.238 0.000 XJ2 0.284 0.293 0.122 0.123 0.164 0.193 0.316 0.209 0.251 0.115 0.221 0.000 注:SL:沙柳,XJ:小叶锦鸡儿,ZZS:樟子松,YS:油松;1:0 ~ 10 cm,2:10 ~ 20 cm,3:20 ~ 40 cm; 表 6 基于门水平不同林分土壤微生物之间的Metastats分析
Table 6. Metastats analysis of soil bacterial abundance based on Phylum-level
林分
Vegetation type菌种
Bacterial平均相对丰度
abundanceP值
P value组1
Group 1组2
Group 2小叶锦鸡儿(组1)—樟子松(组2) 变形菌门 0.259 ± 0.045 0.202 ± 0.033 0.346 放线菌门 0.229 ± 0.063 0.174 ± 0.028 0.459 酸杆菌门 0.147 ± 0.019 0.229 ± 0.046 0.141 厚壁菌门 0.185 ± 0.091 0.140 ± 0.086 0.760 绿弯菌门 0.065 ± 0.026 0.121 ± 0.021 0.132 沙柳(组1)—樟子松(组2) 变形菌门 0.275 ± 0.049 0.202 ± 0.033 0.259 放线菌门 0.242 ± 0.056 0.174 ± 0.028 0.331 酸杆菌门 0.140 ± 0.025 0.229 ± 0.046 0.121 厚壁菌门 0.117 ± 0.063 0.140 ± 0.086 0.848 绿弯菌门 0.083 ± 0.029 0.121 ± 0.021 0.335 沙柳(组1)—小叶锦鸡儿(组2) 变形菌门 0.275 ± 0.049 0.259 ± 0.045 0.779 放线菌门 0.242 ± 0.056 0.229 ± 0.063 0.849 酸杆菌门 0.140 ± 0.025 0.147 ± 0.019 0.796 厚壁菌门 0.117 ± 0.063 0.185 ± 0.091 0.550 绿弯菌门 0.083 ± 0.029 0.065 ± 0.026 0.673 油松(组1)—樟子松(组2) 变形菌门 0.143 ± 0.020 0.202 ± 0.033 0.209 放线菌门 0.225 ± 0.048 0.174 ± 0.028 0.398 酸杆菌门 0.276 ± 0.084 0.229 ± 0.046 0.657 厚壁菌门 0.066 ± 0.043 0.140 ± 0.086 0.502 绿弯菌门 0.152 ± 0.036 0.121 ± 0.021 0.517 油松(组1)—小叶锦鸡儿(组2) 变形菌门 0.143 ± 0.020 0.259 ± 0.045 0.059 放线菌门 0.225 ± 0.048 0.229 ± 0.063 0.952 酸杆菌门 0.276 ± 0.084 0.147 ± 0.019 0.186 厚壁菌门 0.066 ± 0.043 0.185 ± 0.091 0.267 绿弯菌门 0.152 ± 0.036 0.065 ± 0.026 0.100 油松(组1)—沙柳(组2) 变形菌门 0.143 ± 0.020 0.275 ± 0.049 0.050 放线菌门 0.225 ± 0.048 0.242 ± 0.056 0.853 酸杆菌门 0.276 ± 0.084 0.140 ± 0.025 0.187 厚壁菌门 0.066 ± 0.043 0.117 ± 0.063 0.563 绿弯菌门 0.152 ± 0.036 0.083 ± 0.029 0.204 -
[1] 杨 凯, 朱教君, 张金鑫, 等. 不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J]. 生态学报, 2009, (10): 5500 − 5507. [2] 靳乐乐, 乔匀周, 董宝娣, 等. 起垄覆膜栽培技术的增产增效作用与发展[J]. 中国生态农业学报, 2019, 27(9): 1364 − 1374. [3] 杨文权, 寇建村, 贺 璐, 等. 起垄后不同覆盖方式对苹果园土壤微生物和酶活性的影响[J]. 土壤通报, 2014, (6): 1377 − 1382. [4] Wallenstein M D, Hall E K. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning[J]. Biogeochemistry, 2012, 109(1-3): 35 − 47. doi: 10.1007/s10533-011-9641-8 [5] 张 剑, 高 宇, 任永峰, 等. 垄膜集雨种植对土壤微生物及酶活性的影响[J]. 土壤通报, 2018, 49(5): 101 − 106. [6] 王少昆, 赵学勇, 曲 浩, 等. 科尔沁沙地和浑善达克沙地流动沙丘中土壤微生物学特征比较[J]. 环境科学研究, 2010, 23(12): 1516 − 1522. [7] 王素娟, 苏 和, 高 丽. 库布齐沙地土壤微生物数量初步研究[J]. 中国草地学报, 2008, 30(6): 89 − 93. [8] 周智彬, 李培军, 徐新文, 等. 塔里木沙漠公路防护林土壤微生物的生态分布特征[J]. 水土保持学报, 2002, 16(3): 47 − 50. doi: 10.3321/j.issn:1009-2242.2002.03.013 [9] 曹艳峰, 李 彦, 李晨华, 等. 荒漠灌木梭梭(Haloxylon ammodendron)周围土壤微生物的空间分布[J]. 生态学报, 2016, 63(6): 1628 − 1635. [10] 江莎莎, 孙宗玖, 杨静, 等. 封育年限对伊犁绢蒿荒漠草地群落种间关系及稳定性的影响[J]. 中国草地学报, 2018, 40(3): 68 − 75. [11] Brooks T M, Mittermeier R A, Fonseca G A, et al. Global biodiversity conservation priorities[J]. Science, 2006, 313(5783): 58 − 61. doi: 10.1126/science.1127609 [12] Rodrigues A S L, Gaston K J. Maximising phylogenetic diversity in the selection of networks of conservation areas[J]. Biological Conservation, 2002, 105(1): 103 − 111. doi: 10.1016/S0006-3207(01)00208-7 [13] Torres N M. Phylogenetic autocorrelation and evolutionary diversity of Carnivora (Mammalia) in conservation units of the New World[J]. Genetics and Molecular Biology, 2004, 27(4): 511 − 516. doi: 10.1590/S1415-47572004000400008 [14] Faith D P. Conservation evaluation and phylogenetic diversity[J]. Biological Conservation, 1992, 61(1): 1 − 10. doi: 10.1016/0006-3207(92)91201-3 [15] Forest F, Grenyer R, Rouget M, et al. Preserving the evolutionary potential of floras in biodiversity hot spots[J]. Nature, 2007, 445(7129): 757 − 60. doi: 10.1038/nature05587 [16] 王晓波. 我国北方草地土壤微生物群落的空间格局及其驱动机制[D]. 北京: 中国科学院大学, 2015. [17] Xie X H, Liu N, Yang B, et al. Comparison of microbial community in hydrolysis acidification reactor depending on different structure dyes by illumine Miseq sequencing. International Biodeterioration and Biodegradation, 2016, 111: 14-21. [18] 魏 鹏, 安沙舟, 董乙强, 等. 基于高通量测序的准噶尔盆地荒漠土壤细菌多样性及群落结构特征[J]. 草业学报, 2020, 29(5): 182 − 190. [19] 徐先英, 严 平, 郭树江. 干旱荒漠区绿洲边缘典型固沙灌木的降水截留特征[J]. 中国沙漠, 2013, 33(1): 141 − 145. [20] Bachar A, AL-Ashhab A, Soares M I, et al. Soil microbial abundance and diversity along a low precipitation gradient[J]. Microbial Ecology, 2010, 60(2): 453 − 461. doi: 10.1007/s00248-010-9727-1 [21] 刘菊红, 王忠武, 郝敦元, 等. 重牧对荒漠草原主要植物种和功能群组织力的影响[J]. 中国草地学报, 2018, 40(5): 85 − 92. [22] Rasche F, Knapp D, Kaiser C, et al. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest[J]. ISME Journal, 2011, 5(3): 389 − 402. doi: 10.1038/ismej.2010.138 [23] Lauber C L, Ramirez K S, Aanderud Z, et al. Temporal variability in soil microbial communities across landuse types[J]. ISME Journal Multidisciplinary Journal of Microbial Ecology, 2013, 7(8): 1641 − 1650. -