留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

根系分泌物不同组分对西南亚高山云杉人工林土壤微生物和胞外酶活性的影响

袁远爽 黄泽曦 陈丽娟 花江英

袁远爽, 黄泽曦, 陈丽娟, 花江英. 根系分泌物不同组分对西南亚高山云杉人工林土壤微生物和胞外酶活性的影响[J]. 土壤通报, 2022, 53(5): 1079 − 1087 doi: 10.19336/j.cnki.trtb.2021121701
引用本文: 袁远爽, 黄泽曦, 陈丽娟, 花江英. 根系分泌物不同组分对西南亚高山云杉人工林土壤微生物和胞外酶活性的影响[J]. 土壤通报, 2022, 53(5): 1079 − 1087 doi: 10.19336/j.cnki.trtb.2021121701
YUAN Yuan-shuang, HUANG Ze-xi, CHEN Li-juan, HUA Jiang-ying. Different Influences of Exudate Components on Microbial and Enzymatic Activities in a Subalpine Spruce Plantation[J]. Chinese Journal of Soil Science, 2022, 53(5): 1079 − 1087 doi: 10.19336/j.cnki.trtb.2021121701
Citation: YUAN Yuan-shuang, HUANG Ze-xi, CHEN Li-juan, HUA Jiang-ying. Different Influences of Exudate Components on Microbial and Enzymatic Activities in a Subalpine Spruce Plantation[J]. Chinese Journal of Soil Science, 2022, 53(5): 1079 − 1087 doi: 10.19336/j.cnki.trtb.2021121701

根系分泌物不同组分对西南亚高山云杉人工林土壤微生物和胞外酶活性的影响

doi: 10.19336/j.cnki.trtb.2021121701
基金项目: 国家自然科学基金(31960271)和贵州省科学技术基金基 ([2020]1Y075)资助
详细信息
    作者简介:

    袁远爽(1987−),男,贵州省毕节市人,博士,副教授,主要从事土壤生物地球化学循环过程研究。E-mail: yuanys342ky@163.com

  • 中图分类号: Q938.1 + 3

Different Influences of Exudate Components on Microbial and Enzymatic Activities in a Subalpine Spruce Plantation

  • 摘要:   目的  揭示根系分泌物不同组分对土壤微生物及其胞外酶活性的影响差异。  方法  在受控良好的根际生态模拟装置中,通过模拟根系每天向采自西南亚高山云杉人工林(约70年)的土壤中分别添加葡萄糖、草酸和甘氨酸溶液,并培养25天(共添加了70.65 mg 碳)。  结果  葡萄糖添加显著增加了几乎所有微生物类群(除了革兰氏阴性细菌)的活性,草酸添加也显著增加了绝大多数微生物群落的活性(如革兰氏阳性细菌、革兰氏阴性细菌和总微生物群落),但葡萄糖添加对微生物群落活性的增加效应较草酸明显,而甘氨酸添加则呈现出抑制微生物活性的趋势。同时,葡萄糖添加和草酸添加分别显著增加了β-1,4-葡萄糖苷酶和过氧化物酶的活性,并且也有增加酸性磷酸酶和多酚氧化酶酶活性的趋势,而甘氨酸添加对多数胞外酶活性的影响不显著。  结论  根系分泌物不同组分(葡萄糖、草酸和甘氨酸)对土壤微生物活性、群落组成和胞外酶产生了差异化的影响,造成这些差异的原因可能与根系分泌物不同组分所含的化学官能团(甲基和羧基)以及能量属性有关。因此,在未来构建根际生物地球化学循环模型时,应当充分考虑根系分泌物组分之间的差异效应。
  • 图  1  根际生态模拟装置

    Figure  1.  Artificial rhizosphere microcosm

    图  2  根系分泌物不同组分添加对土壤微生物群落活性(A)原生动物磷脂脂肪酸,B)真菌磷脂脂肪酸,C)革兰氏阳性细菌磷脂脂肪酸,D)革兰氏阴性细菌磷脂脂肪酸,E)放线菌磷脂脂肪酸,F)总磷脂脂肪酸)的影响。不同小写字母表示各根系分泌物处理间在P < 0.05水平上差异显著。

    Figure  2.  Microbial community activities induced by exudate components (A) Protozoal PLFAs, B) Fungal PLFAs, C) Gram (−) bacterial PLFAs, D) Gram ( + ) bacterial PLFAs, E) Actinomycetic PLFAs, F) Total PLFAs. Different lowercase letters in the same column indicate significant differences among exudate components at P < 0.05. All the results are the means (SE) of three replicates (n = 3).

    图  3  微生物群落组成的主成分分析图。误差条代表标准误(n = 3)。

    Figure  3.  Microbial community composition described by a principal component analysis of the relative abundances of PLFAs. Error bars represent standard errors (n = 3).

    图  4  根系分泌物不同组分对土壤中胞外酶(A)β-1,4-葡萄糖苷酶,B)酸性磷酸酶,C)过氧化物酶,D)多酚氧化酶)的影响。不同小写字母表示各根系分泌物处理间在P < 0.05水平上差异显著。

    Figure  4.  Extracellular enzyme activities induced by exudate components (A) β-1,4-glucosidase, B) Acid phosphatase, C) Peroxidase, D) Polyphenol oxidase). Different lowercase letters in the same column indicate significant differences among exudates at P < 0.05. All the results are the means (± SE) of three replicates (n = 3).

    表  1  云杉人工林的土壤特性

    Table  1.   Selected soil properties in the spruce plantation

    土壤性质
    Soil Property
    云杉人工林
    Spruce plantation
    土壤容重 (g cm−3) 1.23 ± 0.05
    pH值 6.35 ± 0.10
    土壤电导率 (us cm−1) 89.00 ± 3.59
    微生物量碳 (mg kg−1) 226.7 ± 31
    微生物量氮 (mg kg−1) 81.2 ± 14.4
    总碳 (g kg−1) 28.59 ± 1.52
    总氮 (g kg−1) 1.67 ± 0.16
      注:所有结果均为3次重复(n = 3)的平均值( SE)。
    下载: 导出CSV
  • [1] Djukic I, Zehetner F, Watzinger A, et al. In situ carbon turnover dynamics and the role of soil microorganisms therein: a climate warming study in an Alpine ecosystem[J]. FEMS Microbiology Ecology, 2013, 83(1): 112 − 24. doi: 10.1111/j.1574-6941.2012.01449.x
    [2] Koranda M, Schnecker J, Kaiser C, et al. Microbial processes and community composition in the rhizosphere of European beech - The influence of plant C exudates[J]. Soil Biology & Biochemistry, 2011, 43(3): 551 − 558.
    [3] Huajun Y, Phillips R P, Liang R, et al. , Resource stoichiometry mediates soil C loss and nutrient transformations in forest soils[J]. Applied Soil Ecology, 2016, 108: 248 − 257. doi: 10.1016/j.apsoil.2016.09.001
    [4] 寿南松, 黄 迪, 吴 漪, 等. 不同施氮水平下配施硅肥对水稻根部周围土壤微生物群落结构的影响[J]. 土壤通报, 2021, 52(4): 903 − 911.
    [5] Ludwig M, Achtenhagen J, Miltner A, et al. Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils[J]. Soil Biology & Biochemistry, 2015, 81: 311 − 322.
    [6] Mwafulirwa L D, Baggs E M, Joanne R, et al. Combined effects of rhizodeposit C and crop residues on SOM priming, residue mineralization and N supply in soil[J]. Soil Biology & Biochemistry, 2017, 113: 35 − 44.
    [7] Luo Y Q, Zhao X Y, Andrén O, et al. Artificial root exudates and soil organic carbon mineralization in a degraded sandy grassland in northern China[J]. Journal of Arid Land, 2014, 6(4): 423 − 431. doi: 10.1007/s40333-014-0063-z
    [8] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物−土壤−微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298 − 310.
    [9] Vranova V, Rejsek K, Formanek P. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review[J]. Scientific World Journal, 2013: 524239.
    [10] Badrid V, Vivanco J M. Regulation and function of root exudates[J]. Plant Cell and Environment, 2006, 32: 666 − 681.
    [11] Nguyen C. Rhizodeposition of organic C by plants: mechanisms and controls[J]. Agronomie, 2003, 23(5-6): 375 − 396. doi: 10.1051/agro:2003011
    [12] Lesuffleur F, Paynel F, Bataillé MP, et al. Root amino acid exudation: measurement of high efflux rates of glycine and serine from six different plant species[J]. Plant and Soil, 2007, 294(1-2): 235 − 246. doi: 10.1007/s11104-007-9249-x
    [13] Qiao M, Xiao J, Yin H, et al. Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation[J]. Chemistry and Ecology, 2014, 30(6): 555 − 565. doi: 10.1080/02757540.2013.868891
    [14] Gransee A, Wittenmayer L. Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development[J]. Soil Science, 2000, 163: 381 − 385.
    [15] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes a review[J]. Plant and Soil, 2001, 237: 173 − 195. doi: 10.1023/A:1013351617532
    [16] Carvalhais L C, Dennis P G, Fedoseyenko D, et al. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(1): 3 − 11. doi: 10.1002/jpln.201000085
    [17] Farrar J, Hawes M, Jones D, et al. How roots control the flux of carbon to the rhizosphere[J]. Ecology and Environmental Sciences, 2003, 84(4): 827 − 837.
    [18] Yin H, Wheeler E, Phillips R P. Root-induced changes in nutrient cycling in forests depend on exudation rates[J]. Soil Biology and Biochemistry, 2014, 78: 213 − 221. doi: 10.1016/j.soilbio.2014.07.022
    [19] Clemmensen K E, Finlay R D, Dahlberg A, et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests[J]. New Phytologist, 2015, 205(4): 1525 − 36. doi: 10.1111/nph.13208
    [20] Haichar FZ, Santaella C, Heulin T, et al. , Root exudates mediated interactions belowground[J]. Soil Biology & Biochemistry, 2014, 77: 69 − 80.
    [21] Walker T S, Bais H P, Grotewold E, et al. Root exudation and rhizosphere biology[J]. Plant Physiology, 2003, 132(1): 44 − 51. doi: 10.1104/pp.102.019661
    [22] Weintraub M N, Scott-Denton L E, Schmidt S K, et al. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem[J]. Oecologia, 2007, 154(2): 327 − 38. doi: 10.1007/s00442-007-0804-1
    [23] Kaiser C, Koranda M, Kitzler B, et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil[J]. New Phytologist, 2010, 187(3): 843 − 58. doi: 10.1111/j.1469-8137.2010.03321.x
    [24] 易艳灵, 吴丽英, 杨 倩, 等. 柏木根系分泌物对盆栽香椿土壤养分和酶活性的影响[J]. 生态学杂志, 2019, 38(7): 2080 − 2086.
    [25] Jones D L, Dennis P G, Owen A G, et al. Organic acid behavior in soils- misconceptions and knowledge gaps[J]. Plant and Soil, 2003, 248: 31 − 41. doi: 10.1023/A:1022304332313
    [26] Smith W H. Character and significance of forest tree root exudates.[J]. Ecology and Environmental Sciences, 1976, 57: 324 − 331.
    [27] Bradford M A, Keiser A D, Davies C A, et al. Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth[J]. Biogeochemistry, 2013, 113(1-3): 271 − 81. doi: 10.1007/s10533-012-9822-0
    [28] Frey S D, Lee J, Melillo J M, et al. The temperature response of soil microbial efficiency and its feedback to climate[J]. Nature Climate Change, 2013, 3(4): 395 − 398. doi: 10.1038/nclimate1796
    [29] Keiluweit M, Bougoure J J, Nico P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015, 5(6): 588 − 595. doi: 10.1038/nclimate2580
    [30] 梁儒彪, 进 梁, 乔明锋, 等. 根系分泌物C: N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响[J]. 植物生态学报, 2015, 39(5): 466 − 476. doi: 10.17521/cjpe.2015.0045
    [31] Yuan Y, Zhao W, Zhang Z, et al. Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots[J]. Soil Biology and Biochemistry, 2018, 121: 16 − 23. doi: 10.1016/j.soilbio.2018.03.002
    [32] Yuan Y, Zhang Z, Chen L, et al. The formation of protected SOM facilitated by labile C input via artificial roots[J]. European Journal of Soil Biology, 2020, 100: 103231. doi: 10.1016/j.ejsobi.2020.103231
    [33] Yin H, Li Y, Xiao J, et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming[J]. Global Change Biology, 2013, 19(7): 2158 − 2167. doi: 10.1111/gcb.12161
    [34] 娇 李, 蒋先敏, 尹华军, 等. 不同林龄云杉人工林的根系分泌物与土壤微生物[J]. 应用生态学报, 2014, 25(2): 325 − 332.
    [35] Zelles L. Phospholipid fatty acid profifiles in selected members of soil microbial communities[J]. Chemosphere, 1997: 35(275e94.
    [36] Brant J B, Sulzman E W, Myrold D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation[J]. Soil Biology and Biochemistry, 2006, 38(8): 2219 − 2232. doi: 10.1016/j.soilbio.2006.01.022
    [37] Saiya-Corka K R, Sinsabaugha R L, Zakb D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology & Biochemistry, 2002, 34: 1309 − 1315.
    [38] Bird J A, Herman D J, Firestone M K. Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil[J]. Soil Biology and Biochemistry, 2011, 43(4): 718 − 725. doi: 10.1016/j.soilbio.2010.08.010
    [39] Chaparro J M, Sheflin A M, Manter D K, et al. Manipulating the soil microbiome to increase soil health and plant fertility[J]. Biology and Fertility of Soils, 2012, 48(5): 489 − 499. doi: 10.1007/s00374-012-0691-4
    [40] Zamioudis C, Pieterse C M J. Modulation of host immunity by beneficial microbes[J]. Molecular Plant Microbe Interactions, 2012, 25(2): 139 − 150. doi: 10.1094/MPMI-06-11-0179
    [41] 潘复静, 王克林, 伟 张, 等. 喀斯特不同恢复阶段植物根际土养分和酶活性的季节性变化和根际效应[J]. 桂林理工大学学报, 2020, 40(1): 209 − 217.
    [42] Qiu H, Zheng X, Ge T, et al. Weaker priming and mineralisation of low molecular weight organic substances in paddy than in upland soil[J]. European Journal of Soil Biology, 2017, 83: 9 − 17. doi: 10.1016/j.ejsobi.2017.09.008
    [43] Gunina A, Smith A R, Kuzyakov Y, et al. Microbial uptake and utilization of low molecular weight organic substrates in soil depend on carbon oxidation state[J]. Biogeochemistry, 2017, 133(1): 1 − 12. doi: 10.1007/s10533-017-0322-0
    [44] Paterson E, Gebbing T, Abel C, et al. Rhizodeposition shapes rhizosphere microbial community structure in organic soil[J]. New Phytologist, 2007, 173(3): 600 − 610. doi: 10.1111/j.1469-8137.2006.01931.x
    [45] Holger F, Yakov K. Sorption, microbial uptake and decomposition of acetate in soil: Transformations revealed by position-specific 14C labeling[J]. Soil Biology & Biochemistry, 2010, 42(2): 186 − 192.
    [46] Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: a question of microbial competition?[J]. Soil Biology and Biochemistry, 2003, 35(6): 837 − 43. doi: 10.1016/S0038-0717(03)00123-8
    [47] Blagodatskaya E V, Blagodatsky S A, Anderson T H, et al. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies[J]. Applied Soil Ecology, 2007, 37(1-2): 95 − 105. doi: 10.1016/j.apsoil.2007.05.002
    [48] Strickland M S, Mcculley R L, Nelson J A, et al. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities[J]. Frontiers in Microbiology, 2015, 6: 817.
    [49] Moore J A M, Jiang J, Patterson C M, et al. Interactions among roots, mycorrhizas and free‐living microbial communities differentially impact soil carbon processes[J]. Journal of Ecology, 2015, 103(6): 1442 − 1453. doi: 10.1111/1365-2745.12484
    [50] Mal S, Krlovec J, Hampel D. Effects of long-term mineral fertilization on microbial biomass, microbial activity, and the presence of r- and K-strategists in soil[J]. Biology and Fertility of Soils, 2009, 45(7): 753 − 760. doi: 10.1007/s00374-009-0388-5
    [51] Clarholm M, Skyllberg U, Rosling A. Organic acid induced release of nutrients from metal-stabilized soil organic matter -The unbutton model[J]. Soil Biology & Biochemistry, 2015, 84: 168 − 176.
    [52] 苑亚茹, 韩晓增, 李禄军, 等. 低分子量根系分泌物对土壤微生物活性及团聚体稳定性的影响[J]. 水土保持学报, 2011, 25(6): 96 − 99.
    [53] 李庆凯, 刘 苹, 唐朝辉, 等. 两种酚酸类物质对花生根部土壤养分、酶活性和产量的影响[J]. 应用生态学报, 2016, 27(4): 1189 − 1195.
    [54] Fog K. The effect of added nitrogen on the rate of decomposition of organic matter[J]. Biologia, 1988, 63: 433 − 462.
    [55] Guo H, Ye C, Zhang H, et al. Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow[J]. Soil Biology & Biochemistry, 2017, 113: 26 − 34.
    [56] Mueller R C, Belnap J, Kuske C R. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland[J]. Frontiers in Microbiology, 2015, 6: 891.
    [57] Högberg P, Högberg MN, Göttlicher SG, et al. High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms[J]. New Phytologist, 2008, 177: 220 − 228. doi: 10.1111/j.1469-8137.2007.02238.x
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  29
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 录用日期:  2022-03-21
  • 修回日期:  2022-02-04
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回