留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯微塑料浓度对黑土团聚体特征及其稳定性的影响

陈荣桓 余瑶 黄珊 陈荣龙 贾焮凯 陈延华 薛萐 刘萌娟 杨晓梅

陈荣桓, 余 瑶, 黄 珊, 陈荣龙, 贾焮凯, 陈延华, 薛 萐, 刘萌娟, 杨晓梅. 聚乙烯微塑料浓度对黑土团聚体特征及其稳定性的影响[J]. 土壤通报, 2023, 54(1): 56 − 66 doi: 10.19336/j.cnki.trtb.2021122106
引用本文: 陈荣桓, 余 瑶, 黄 珊, 陈荣龙, 贾焮凯, 陈延华, 薛 萐, 刘萌娟, 杨晓梅. 聚乙烯微塑料浓度对黑土团聚体特征及其稳定性的影响[J]. 土壤通报, 2023, 54(1): 56 − 66 doi: 10.19336/j.cnki.trtb.2021122106
CHEN Rong-huan, YU Yao, HUANG Shan, CHEN Rong-long, JIA Xin-kai, CHEN Yan-hua, XUE Sha, LIU Meng-juan, YANG Xiao-mei. Effect of Polyethylene Microplastic Concentration on the Characteristics and Stability of Black Soil Aggregates[J]. Chinese Journal of Soil Science, 2023, 54(1): 56 − 66 doi: 10.19336/j.cnki.trtb.2021122106
Citation: CHEN Rong-huan, YU Yao, HUANG Shan, CHEN Rong-long, JIA Xin-kai, CHEN Yan-hua, XUE Sha, LIU Meng-juan, YANG Xiao-mei. Effect of Polyethylene Microplastic Concentration on the Characteristics and Stability of Black Soil Aggregates[J]. Chinese Journal of Soil Science, 2023, 54(1): 56 − 66 doi: 10.19336/j.cnki.trtb.2021122106

聚乙烯微塑料浓度对黑土团聚体特征及其稳定性的影响

doi: 10.19336/j.cnki.trtb.2021122106
基金项目: 黄土高原土壤侵蚀与旱地农业国家重点实验室基金(A314021402-2017)和陕西省人才引进专项(F2020221008)资助
详细信息
    作者简介:

    陈荣桓(1997−),男,山东淄博人,硕士研究生,主要从事微塑料污染对土壤质量影响的研究。E-mail: 1484736887@qq.com

    通讯作者:

    E-mail: xiaomei.yang@nwafu.edu.cn

  • 中图分类号: X505; S153

Effect of Polyethylene Microplastic Concentration on the Characteristics and Stability of Black Soil Aggregates

  • 摘要:   目的  微塑料会与土壤颗粒及团聚体相互作用而影响土壤的稳定性,探究微塑料浓度对黑土团聚体特征及其稳定性的影响,以期为农田土壤(微)塑料污染及土壤健康评价提供数据基础。  方法  通过大豆盆栽实验,研究自然条件下不同微塑料浓度(0%、0.1%、0.5%、1%、2%、5%)对黑土团聚体组成、团聚体稳定性(大团聚体含量R > 0.25)、土壤团聚体特征指标(平均质量直径MWD、几何均重直径GMD、分形维数FD)的影响。  结果  不同微塑料浓度处理中,< 0.25 mm的机械稳定性团聚体含量比例最小,且 > 2 mm和 < 0.25 mm的团聚体含量比例随着微塑料浓度的增加而增加;> 2 mm的水稳性团聚体含量比例最小,< 0.25 mm的水稳性团聚体含量比例随着微塑料浓度的增加而增加;但在1%浓度时,机械稳定性和水稳性团聚体含量比例均与其他浓度的趋势相反;无植物种植的团聚体变化与种植物的相似。土壤大团聚体(R > 0.25)的含量比例随着微塑料浓度的增加而显著减小,当微塑料浓度为1%时,其含量比例略低于对照试验(CK)。不同采样期,大豆成熟期的土壤机械稳定性团聚体和水稳性团聚体的MWD、GMD均比花期的小,而花期的团聚体分形维数比成熟期高,表明随着大豆生长及微塑料的作用,土壤团聚体稳定性降低。通过相关性分析表明,MWD与GMD呈极显著正相关关系,且二者均与FD值呈极显著负相关,即土壤团聚体MWD和GMD总体显著增大,FD值则显著减小,从而表征土壤颗粒团聚性下降。此外,当土壤中微塑料浓度为1%时,土壤团聚体分形维数最小,即土壤团聚作用增强。  结论  土壤中微塑料累积浓度越高,对土壤团聚体产生的破坏作用越强,导致土壤颗粒间聚合能力减弱,土壤中微塑料浓度为1%是否可作为影响黑土团聚体稳定性变化的阈值还有待后续研究,以期为全面评估微塑料对土壤质量的影响提供依据。
  • 图  1  微塑料浓度对土壤机械稳定性团聚体稳定性变化的影响

    A、B、C、D分别为不同微塑料浓度处理中大团聚体R > 0.25含量、平均质量直径、几何平均直径及分形维数的变化。不同小写字母表示不同采样期不同微塑料浓度间在P < 0.05水平差异显著。下同。

    Figure  1.  Effect of microplastic concentration on the stability of soil mechanical stable aggregates

    图  2  微塑料浓度对土壤水稳性团聚体稳定性变化的影响

    Figure  2.  Effect of microplastic concentration on the stability of soil water-stable aggregates

    表  1  微塑料浓度对机械稳定性团聚体组成的影响

    Table  1.   Effect of microplastic concentration on mechanical stability composition of aggregates

    采样期
    Sampling period
    微塑料浓度
    Microplastic concentration
    粒径组成比例 (%)
    Percentage of different particles
    > 2 mm1 ~ 2 mm0.5 ~ 1 mm0.25 ~ 0.5 mm< 0.25 mm
    花期 原始土样(CK0) 22.56 ± 0.48 abc 19.70 ± 0.53 ab 25.11 ± 0.04 a 16.51 ± 0.11 a 16.12 ± 0.94 abc
    0%(CK) 20.88 ± 1.70 bc 22.22 ± 3.76 ab 24.30 ± 1.13 ab 18.23 ± 1.27 a 14.37 ± 1.36 c
    0.1% 20.75 ± 1.30 c 23.07 ± 1.89 a 23.84 ± 1.08 abc 17.04 ± 1.26 a 15.30 ± 2.36 bc
    0.5% 22.55 ± 2.11 abc 21.65 ± 1.84 ab 22.42 ± 0.86 bc 16.51 ± 1.61 a 16.87 ± 1.46 abc
    1% 20.97 ± 1.85 bc 21.08 ± 1.92 ab 24.82 ± 1.65 a 18.12 ± 2.68 a 15.01 ± 1.60 bc
    2% 23.78 ± 0.82 ab 20.43 ± 1.14 ab 22.04 ± 0.81 c 16.52 ± 1.78 a 17.23 ± 1.06 ab
    5% 24.50 ± 1.65 a 19.67 ± 2.05 b 21.87 ± 1.01 c 15.70 ± 1.64 a 18.26 ± 0.67 a
    成熟期 0%(CK) 16.89 ± 0.93 cd 23.36 ± 0.95 ab 25.17 ± 1.71 a 19.15 ± 1.25 ab 15.43 ± 1.23 c
    0.1% 17.02 ± 1.34 cd 23.00 ± 1.25 ab 24.55 ± 2.04 a 19.36 ± 1.13 ab 16.07 ± 1.85 bc
    0.5% 18.25 ± 0.98 bcd 21.99 ± 1.56 abc 23.94 ± 1.10 a 18.31 ± 0.63 b 17.51 ± 1.88 abc
    1% 16.17 ± 1.52 d 23.69 ± 0.31 a 24.64 ± 1.86 a 20.21 ± 1.20 a 15.29 ± 1.20 c
    2% 18.88 ± 1.35 bc 21.48 ± 0.89 bcd 23.17 ± 1.28 a 18.11 ± 0.73 bc 18.36 ± 1.38 ab
    5% 20.07 ± 1.74 b 20.43 ± 1.09 cd 22.24 ± 1.52 a 17.79 ± 0.52 bc 19.47 ± 0.89 a
      注:同列不同字母表示不同微塑料浓度间的差异显著(P < 0.05)。下同。
    下载: 导出CSV

    表  2  微塑料浓度对水稳性团聚体组成的影响

    Table  2.   Effect of microplastic concentration on water stability composition of aggregates

    采样期
    Sampling period
    微塑料浓度
    Microplastic concentration
    粒径组成比例 (%)
    Percentage of different particles
    > 2 mm1 ~ 2 mm0.5 ~ 1 mm0.25 ~ 0.5 mm< 0.25 mm
    花期 原始土样(CK0) 14.35 ± 0.49 a 25.05 ± 1.02 bc 25.25 ± 0.44 a 14.96 ± 0.41 ab 20.39 ± 1.38 c
    0%(CK) 13.30 ± 1.80 ab 26.38 ± 2.53 ab 24.23 ± 3.34 a 13.18 ± 1.34 bc 22.91 ± 2.02 b
    0.1% 13.07 ± 1.83 ab 25.52 ± 2.31 abc 24.32 ± 1.85 a 13.29 ± 1.13 bc 23.80 ± 0.75 ab
    0.5% 12.04 ± 2.37 b 24.76 ± 3.09 abc 25.30 ± 0.89 a 13.76 ± 1.50 abc 24.14 ± 0.53 ab
    1% 13.19 ± 3.54 ab 23.46 ± 1.19 c 25.72 ± 1.39 a 15.15 ± 2.90 a 22.48 ± 0.62 bc
    2% 11.50 ± 1.75 ab 24.92 ± 1.88 c 24.30 ± 2.85 a 14.24 ± 2.25 ab 25.04 ± 2.21 a
    5% 10.20 ± 1.77 b 25.08 ± 4.01 a 24.82 ± 2.30 a 13.90 ± 4.39 c 26.00 ± 1.69 a
    成熟期 0%(CK) 12.12 ± 1.70 abc 23.10 ± 3.85 a 27.69 ± 3.03 a 15.96 ± 2.20 bc 21.13 ± 1.25 c
    0.1% 11.66 ± 2.97 ab 21.75 ± 3.51 bc 26.31 ± 1.66 a 18.39 ± 1.51 ab 21.89 ± 1.21 bc
    0.5% 11.12 ± 1.62 bcd 20.96 ± 1.28 bc 26.06 ± 1.38 a 18.71 ± 2.24 a 23.15 ± 0.93 ab
    1% 13.01 ± 0.98 abc 23.02 ± 1.11 ab 26.54 ± 2.35 a 16.08 ± 1.29 bc 21.35 ± 0.60 c
    2% 10.63 ± 1.00 cd 20.43 ± 1.78 bc 26.70 ± 2.12 a 18.90 ± 1.71 ab 23.34 ± 0.63 ab
    5% 8.95 ± 1.18 d 19.75 ± 1.33 c 27.47 ± 1.59 a 19.40 ± 1.42 a 24.43 ± 0.55 a
    下载: 导出CSV

    表  3  土壤团聚体机械稳定性特征指标与不同粒级间的相关性分析

    Table  3.   Correlation analysis between mechanical stability characteristics of soil aggregates and different grain sizes

    参数
    Parameter
    MWDGMDFD土壤机械稳定性团聚体不同粒径(mm)
    Different particle sizes of soil mechanically stable aggregates
    > 2 mm1 ~ 2 mm0.5 ~ 1 mm0.25 ~ 0.5 mm< 0.25 mm
    MWD 1 0.848** −0.842** 0.954** −0.442** −0.354** −0.577** −0.056
    GMD 1 −0.946** 0.672** 0.023 0.003 −0.522** −0.502**
    FD 1 0.670** 0.010 −0.016 0.741** 0.317**
      注:*代表相关性达到显著水平(P < 0.05);**代表相关性达到极显著水平(P < 0.01)。下同。
    下载: 导出CSV

    表  4  土壤团聚体水稳性特征指标与不同粒级间的相关性分析

    Table  4.   Correlation analysis between water stability characteristics of soil aggregates and different grain sizes

    参数
    Parameter
    MWDGMDFD土壤水稳性团聚体不同粒径(mm)
    Different particle sizes of soil water-stable aggregates
    > 2 mm1 ~ 2 mm0.5 ~ 1 mm0.25 ~ 0.5 mm< 0.25 mm
    MWD 1 0.871** −0.785** 0.895** 0.299** −0.379** −0.535** −0.197*
    GMD 1 −0.974** 0.663** 0.462** −0.084 −0.590** −0.490**
    FD 1 0.550** −0.525** 0.059 0.564** 0.553**
    下载: 导出CSV
  • [1] Qi Y L, Beriot N, Gort G, et al. Impact of plastic mulch film debris on soil physicochemical and hydrological properties[J]. Environmental Pollution, 2020, 266(3): 115097.
    [2] Andrady A L. Microplastics in the marine environment[J]. Mar Pollution Bulletin, 2011, 62(8): 1596 − 1605. doi: 10.1016/j.marpolbul.2011.05.030
    [3] 任欣伟, 唐景春, 于 宸, 等. 土壤微塑料污染及生态效应研究进展[J]. 农业环境科学学报, 2018, 37(6): 1045 − 1058. doi: 10.11654/jaes.2017-1409
    [4] Rillig, Matthias C. Microplastic in Terrestrial Ecosystems and the Soil?[J]. Environmental Science & Technology, 2012, 46(12): 6453 − 6454.
    [5] 雷晓婷, 雷金银, 周丽娜, 等. 微塑料对农田土壤质量的影响研究现状与分析[J]. 宁夏农林科技, 2020, 61(2): 26 − 28. doi: 10.3969/j.issn.1002-204x.2020.02.010
    [6] 吴 为, 张 敏, 缪 明, 等. 土壤环境中微塑料的发生、来源及影响研究进展[J]. 湖南生态科学学报, 2021, 8(3): 90 − 98. doi: 10.3969/j.issn.2095-7300.2021.03.014
    [7] 唐 骏, 党廷辉, 薛 江, 等. 植被恢复对黄土区煤矿排土场土壤团聚体特征的影响[J]. 生态学报, 2016, 36(16): 5067 − 5077.
    [8] Hillel D. 5–Soil Structure and Aggregation[J]. Introduction to Environmental Soil Physics, 2003, 378(6): 73 − 89.
    [9] 郑子成, 李廷轩, 张锡洲, 等. 不同土地利用方式下土壤团聚体的组成及稳定性研究[J]. 水土保持学报, 2009, 23(5): 228 − 231,236. doi: 10.3321/j.issn:1009-2242.2009.05.049
    [10] 姜 敏, 刘 毅, 刘 闯, 等. 丹江口库区不同土地利用方式土壤团聚体稳定性及分形特征[J]. 水土保持学报, 2016, 30(6): 265 − 270.
    [11] Six J, Elliott E T, Paustian K. Soil structure and soil organic matter: Ⅱ. A normalized stability index and the effect of mineralogy[J]. Soil Science Society of America Journal, 2000, 64(3): 1042 − 1049. doi: 10.2136/sssaj2000.6431042x
    [12] 黄 安, 谢贤健, 周贵尧, 等. 内江市微地形条件影响下土壤团聚体稳定性及分形特征[J]. 水土保持研究, 2012, 19(6): 77 − 81.
    [13] 徐香茹, 汪景宽. 土壤团聚体与有机碳稳定机制的研究进展[J]. 土壤通报, 2017, 48(6): 7.
    [14] 田 剑, 樊文华, 刘奋武, 等. 改良剂对复垦土壤团聚体组成及其稳定性的影响[J]. 山西农业科学, 2020, 48(5): 761 − 767,792. doi: 10.3969/j.issn.1002-2481.2020.05.24
    [15] 陈武荣, 叶莹莹, 陆 珊, 等. 喀斯特地区翻耕和玉米种植对土壤团聚体、氮素及微生物量的影响[J]. 亚热带资源与环境学报, 2021, 16(2): 25 − 31. doi: 10.3969/j.issn.1673-7105.2021.02.005
    [16] 池明眼, 王天顺, 卢芸笑, 等. 农用塑料薄膜对土壤环境的影响[J]. 中国林副特产, 2019, (3): 79 − 82.
    [17] Zhang G S, Zhang F X, Li X T. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment[J]. Science of the Total Environment, 2019, 670: 1 − 7. doi: 10.1016/j.scitotenv.2019.03.149
    [18] 张飞祥. 聚酯微纤维对土壤物理性质的影响[D]. 昆明, 云南大学, 2019.
    [19] Wan Y, Wu C X, Xue Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil[J]. Science of The Total Environment, 2019, 654: 576 − 582. doi: 10.1016/j.scitotenv.2018.11.123
    [20] 梁爱珍, 张晓平, 杨学明, 等. 耕作对东北黑土团聚体粒级分布及其稳定性的短期影响[J]. 土壤学报, 2009, 46(1): 154 − 158. doi: 10.3321/j.issn:0564-3929.2009.01.022
    [21] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896 − 1896. doi: 10.3321/j.issn:0023-074X.1993.20.010
    [22] 张治伟, 傅瓦利, 张 洪, 等. 石灰岩土壤结构稳定性及影响因素研究[J]. 水土保持学报, 2009, 23(1): 164 − 168. doi: 10.3321/j.issn:1009-2242.2009.01.035
    [23] Abel D S M A, Wai C L, Jennifer T, et al. Impacts of microplastics on the soil biophysical environment[J]. Environmental Science & Technology, 2018, 52(17): 9656 − 9665.
    [24] Lehmann A, Fitschen K, Rillig M C. Abiotic and biotic factors influencing the effect of microplastic on soil aggregation[J]. Soil Systems, 2019, 3(1): 21. doi: 10.3390/soilsystems3010021
    [25] Bosker T, Bouwman L J, Brun N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774 − 781. doi: 10.1016/j.chemosphere.2019.03.163
    [26] Weert S V, Redondo-Hasselerharm P E, Diepens N J, et al. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes[J]. Science of the Total Environment, 2019, 654: 1040 − 1047. doi: 10.1016/j.scitotenv.2018.11.183
    [27] 韩 笑, 佘冬立, 王洪德, 等. 滨海土壤团聚体分布和分形维数及其影响因子研究[J]. 灌溉排水学报, 2021, 40(5): 88 − 92,113.
    [28] 祁迎春, 王益权, 刘 军, 等. 不同土地利用方式土壤团聚体组成及几种团聚体稳定性指标的比较[J]. 农业工程学报, 2011, 27(1): 340 − 347. doi: 10.3969/j.issn.1002-6819.2011.01.055
    [29] 李鉴霖, 江长胜, 郝庆菊. 土地利用方式对缙云山土壤团聚体稳定性及其有机碳的影响[J]. 环境科学, 2014, 35(12): 4695 − 4704.
    [30] 刘文利, 吴景贵, 傅民杰, 等. 种植年限对果园土壤团聚体分布与稳定性的影响[J]. 水土保持学报, 2014, 28(1): 129 − 135. doi: 10.3969/j.issn.1009-2242.2014.01.025
    [31] 邱莉萍, 张兴昌, 张晋爱. 黄土高原长期培肥土壤团聚体中养分和酶的分布[J]. 生态学报, 2006, 26(2): 364 − 372. doi: 10.3321/j.issn:1000-0933.2006.02.008
    [32] Rillig M C, Lehmann A. Microplastic in terrestrial ecosystems[J]. Science, 2020, 368(6498): 1430 − 1431. doi: 10.1126/science.abb5979
    [33] Li B T, Huang S, Wang H M, et al. Effects of plastic particles on germination and growth of soybean (Glycine max): a pot experiment under field condition[J]. Environmental Pollution, 2021, 272: 116418. doi: 10.1016/j.envpol.2020.116418
    [34] Chenu C, Guérif J. Mechanical strength of clay minerals as influenced by an adsorbed polysaccharide[J]. Soil Science Society of America Journal, 1991, 55(4): 1076 − 1080. doi: 10.2136/sssaj1991.03615995005500040030x
    [35] 宋 日, 刘 利, 马丽艳, 等. 作物根系分泌物对土壤团聚体大小及其稳定性的影响[J]. 南京农业大学学报, 2009, 32(3): 93 − 97.
    [36] Reubens B, Poesen J, Danjon F, et al. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review[J]. Trees, 2007, 21(4): 385 − 402. doi: 10.1007/s00468-007-0132-4
    [37] Vannoppen W, De Baets S, Keeble J, et al. How do root and soil characteristics affect the erosion-reducing potential of plant species?[J]. Ecological Engineering, 2017, 109: 186 − 195. doi: 10.1016/j.ecoleng.2017.08.001
    [38] 陈 山, 杨 峰, 林 杉, 等. 土地利用方式对红壤团聚体稳定性的影响[J]. 水土保持学报, 2012, 26(5): 211 − 216.
    [39] 安婉丽, 高灯州, 潘 婷, 等. 水稻秸秆还田对福州平原稻田土壤水稳性团聚体分布及稳定性影响[J]. 环境科学学报, 2016, 36(5): 1833 − 1840.
    [40] 王志强, 刘 英, 杨文亭, 等. 稻田复种轮作休耕对土壤团聚体分布及稳定性的影响[J]. 土壤学报, 2018, 55(5): 1143 − 1155. doi: 10.11766/trxb201712220590
    [41] Zhang G S, Liu Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of The Total Environment, 2018, 642: 12 − 20. doi: 10.1016/j.scitotenv.2018.06.004
    [42] Li Q, Liu G B, Zhang Z, et al. Relative contribution of root physical enlacing and biochemistrical exudates to soil erosion resistance in the Loess soil[J]. Catena, 2017, 153: 6 − 65.
    [43] 万海霞, 马 璠, 许 浩, 等. 宁夏南部黄土丘陵区典型草本群落根系垂直分布特征与土壤团聚体的关系[J]. 水土保持研究, 2019, 26(6): 80 − 86,91.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  72
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 录用日期:  2022-05-19
  • 修回日期:  2022-03-25
  • 网络出版日期:  2023-02-02
  • 刊出日期:  2023-02-06

目录

    /

    返回文章
    返回