留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物根系分泌物与根际微生物交互作用机制研究进展

丁娜 林华 张学洪 贺瑶 俞果

丁 娜, 林 华, 张学洪, 贺 瑶, 俞 果. 植物根系分泌物与根际微生物交互作用机制研究进展[J]. 土壤通报, 2022, 53(5): 1212 − 1219 doi: 10.19336/j.cnki.trtb.2022010201
引用本文: 丁 娜, 林 华, 张学洪, 贺 瑶, 俞 果. 植物根系分泌物与根际微生物交互作用机制研究进展[J]. 土壤通报, 2022, 53(5): 1212 − 1219 doi: 10.19336/j.cnki.trtb.2022010201
DING Na, LIN Hua, ZHANG Xue-hong, HE Yao, YU Guo. Interaction Mechanism Between Root Secretion and Rhizosphere Microorganisms: a Review[J]. Chinese Journal of Soil Science, 2022, 53(5): 1212 − 1219 doi: 10.19336/j.cnki.trtb.2022010201
Citation: DING Na, LIN Hua, ZHANG Xue-hong, HE Yao, YU Guo. Interaction Mechanism Between Root Secretion and Rhizosphere Microorganisms: a Review[J]. Chinese Journal of Soil Science, 2022, 53(5): 1212 − 1219 doi: 10.19336/j.cnki.trtb.2022010201

植物根系分泌物与根际微生物交互作用机制研究进展

doi: 10.19336/j.cnki.trtb.2022010201
基金项目: 国家自然科学基金(52070051, 52170154, 51868010)、广西科技计划项目(2020GXNSFAA297256; 2021GXNSFBA220055; 2021GXNSFBA196023)、广西科技基地和人才专项(桂科AD19110156)和桂林市科技计划项目(20190219-3)资助
详细信息
    作者简介:

    丁娜:丁 娜(1996−),女,江西丰城人,硕士研究生,研究方向为污染土壤的生态修复,E-mail: 485697901@qq.com

    通讯作者:

    E-mail: yuguo@glut.edu.cn

  • 中图分类号: S154.4

Interaction Mechanism Between Root Secretion and Rhizosphere Microorganisms: a Review

  • 摘要: 根际是受植物根系影响最为强烈的微域环境,是植物和土壤交流的桥梁。根系能通过调控根系分泌物的种类和数量影响根际微生物的种群结构和多样性,根际微生物通过改变根际土壤特性影响根系的分泌作用,进而影响植物的生长发育过程。因此,很有必要对这些研究进展进行梳理,提出未来该领域的研究重点。本文以1999 ~ 2022年中国知网(CNKI)和Web of Science核心数据库为文献来源,对根系分泌物与根际微生物互作相关的64篇论文进行分析。总结了近年来根系分泌物和根际微生物互作的最新研究成果,重点介绍了根系分泌物对根际微生物种类、数量和分布的影响,环境胁迫对根系分泌物和根际微生物的影响,以及根际微生物对植物生长的影响。基于此,我们对该领域未来的研究方向进行了展望。深入理解根系分泌物和根际微生物之间复杂的互作关系及其机理,对揭示根际微生态调控过程、土壤微生物组功能、促进农作物增产等方面具有重要的意义。
  • 图  1  根际微生物群落组成的决定因素

    Figure  1.  Key factors influencing the composition of rhizosphere microbial community

    表  1  根系分泌物的分类

    Table  1.   Classification of root exudates

    组成
    Component
    分泌物组成
    Secretion composition
    糖类 葡萄糖、果糖、蔗糖、阿拉伯糖、木糖、甘露糖、麦芽糖、核糖、半乳糖、棉子糖、鼠李糖、寡糖
    有机酸 琥珀酸、苹果酸、酒石酸、乳酸、甲酸、丁酸、乙酸、丙酸、草酸、柠檬酸、丙酮酸、己二酸、戊二酸、丙二酸、丁二酸
    氨基酸 谷氨酸、天冬氨酸、丙氨酸、苏氨酸、丝氨酸、缬氨酸、甘氨酸、异亮氨酸、高丝氨酸、组氨酸、赖氨酸、精氨酸、亮氨酸、脯氨酸、苯丙氨酸、γ-氨基丁酸、蛋氨酸、鸟氨酸、色氨酸、酪氨酸
    脂肪酸 亚油酸、亚麻酸、棕榈酸、油酸、软脂酸、硬脂酸、花生酸
    酚酸类 丁香酸、香草酸、肉桂酸、香豆酸、香草酸、咖啡酸、水杨酸
    生长因子 生物素、泛酸、硫胺素、胆碱、肌醇、尼克酸、烟酸、维生素H、维生素B6、对氨基苯甲酸
    胞外酶 淀粉酶、蛋白酶、转化酶、RNA酶、DNA酶、硫酸酶
    其他 糖苷、皂角苷、黄酮类化合物、多肽、荧光物质、有机磷化物、乙烯
    下载: 导出CSV

    表  2  不同植物种类的不同根系分泌物对根际微生物群落的塑造

    Table  2.   The influence of different root exudates of plant species on the rhizosphere microbial community

    植物种类
    Plant species
    根系分泌物
    Root exudate
    特异性微生物
    Specific microbe
    参考文献
    Reference
    拟南芥
    Arabidopsis thaliana
    三萜
    (triterpenes)
    变形菌门
    Proteobacteria
    [21]
    香蕉
    Musa nana Lour.)
    富马酸
    (fumaric acid)
    枯草芽孢杆菌N11
    Bacillus subtilis. N11)
    [16]
    玉米
    Zea mays Linn.
    苯并恶唑类化合物
    (benzoxazinoids)
    恶臭假单细胞菌
    Pseudomonas putida
    [22]
    西瓜
    Citrullus lanatus
    苹果酸和柠檬酸
    (malic acid and citric acid)
    多粘类芽孢杆菌SQR21
    Paenibacillus polymyxa.SQR21)
    [23]
    花生
    Arachis hypogaea Linn
    酚酸
    (phenolic acids)
    假单胞菌
    pseudomonads
    [24]
    大豆
    Glycine max (Linn.) Merr.
    异黄酮
    (isoflavones)
    慢生根瘤菌和中华根瘤菌
    Bradyrhizobium and Sinorhizobium
    [25]
    下载: 导出CSV
  • [1] Qu Q, Zhang Z Y, Liu W Y, et al. Rhizosphere Microbiome Assembly and Its Impact on Plant Growth[J]. Journal of Agricultural and Food Chemistry, 2020, 68: 5024 − 5038. doi: 10.1021/acs.jafc.0c00073
    [2] 邵秋雨, 董醇波, 韩燕峰, 等. 植物根际微生物组的研究进展[J]. 植物营养与肥料学报, 2021, 27(1): 144 − 152.
    [3] Haichar F E Z, Heulin T, Guyonnet J P, et al. Stable isotope probing of carbon flow in the plant holobiont[J]. Current Opinion in Biotechnology, 2016, 41: 9 − 13. doi: 10.1016/j.copbio.2016.02.023
    [4] Doidy J, Grace E, Kühn C, et al. Sugar transporters in plants and their interactions with fungi[J]. Trends in Plant Science, 2012, 17(7): 413 − 422. doi: 10.1016/j.tplants.2012.03.009
    [5] Snowden C J, Thomas B, Baxter C J, et al. A tonoplast Glu/Asp/GABA exchanger that affects tomato fruit amino acid composition[J]. Plant Journal, 2015, 81(5): 651 − 660. doi: 10.1111/tpj.12766
    [6] Sharma T, Dreyer I, Kochian L, et al. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security[J]. Frontiers in Plant Science, 2016, 7: 1488.
    [7] 袁仁文, 刘 琳, 张 蕊, 等. 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报, 2020, 36(2): 26 − 35. doi: 10.11924/j.issn.1000-6850.casb18090023
    [8] Carla D L F C, Simonin M, King E, et al. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness[J]. Plant Journal, 2020, 103(3): 951 − 964. doi: 10.1111/tpj.14781
    [9] Olanrewaju O S, Ayangbenro A S, Glick B R, et al. Plant health: feedback effect of root exudates-rhizobiome interactions[J]. Applied Microbiology and Biotechnology, 2019, 103(3): 1155 − 1166. doi: 10.1007/s00253-018-9556-6
    [10] Bakker P A, Doornbos R F, Zamioudis C, et al. Induced systemic resistance and the rhizosphere microbiome[J]. Plant Pathology Journal, 2013, 29(2): 136 − 143. doi: 10.5423/PPJ.SI.07.2012.0111
    [11] Santhanam R, Luu V T, Weinhold A, et al. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(36): E5013 − E5020.
    [12] Moe L A. Amino acids in the rhizosphere: from plants to microbes[J]. American Journal Botany, 2013, 100(9): 1692 − 1705. doi: 10.3732/ajb.1300033
    [13] Mommer L, Kirkegaard J, van Ruijven J. Root–root interactions: towards a rhizosphere framework[J]. Trends in Plant Science, 2016, 21(3): 209 − 217. doi: 10.1016/j.tplants.2016.01.009
    [14] Lakshmanan V, Selvaraj G, Bais H P. Functional soil microbiome: belowground solutions to an aboveground problem[J]. Plant Physiology, 2014, 166(2): 689 − 700. doi: 10.1104/pp.114.245811
    [15] Chaparro J M, Badri D V, Vivanco J M. Rhizosphere microbiome assemblage is affected by plant development[J]. ISME Journal, 2014, 8(4): 790 − 803. doi: 10.1038/ismej.2013.196
    [16] Zhang N, Wang D D, Liu Y P, et al. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains[J]. Plant and Soil, 2014, 374(1 − 2): 689 − 700. doi: 10.1007/s11104-013-1915-6
    [17] Li S Q, Zhang N, Zhang Z H, et al. Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation[J]. Biology and Fertility of Soils, 2013, 49(3): 295 − 303. doi: 10.1007/s00374-012-0718-x
    [18] Massalha H, Korenblum E, Malitsky S, et al. Live imaging of root-bacteria interactions in a microfluidics setup[J]. Proceedings of the National Academy Sciences of the United States of America, 2017, 114(17): 4549 − 4554. doi: 10.1073/pnas.1618584114
    [19] Viviane C, Cristina R, Francisco D A, et al. Successive plant growth amplifies genotype-specific assembly of the tomato rhizosphere microbiome[J]. Science of the Total Environment, 2021, 772: 144825. doi: 10.1016/j.scitotenv.2020.144825
    [20] Jog R, Pandya M, Nareshkumar G, et al. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth[J]. Microbiology-SGM, 2014, 160(4): 778 − 788. doi: 10.1099/mic.0.074146-0
    [21] Huang A C, Jiang T, Liu Y X, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364(6440): 546.
    [22] Neal A L, Ahmad S, Gordon-Weeks R, et al. Benzoxazinoids in root exudates of maize attract pseudomonas putida to the rhizosphere[J]. Plos One, 2012, 7(4).
    [23] Ling N, Raza W, Ma J H, et al. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere[J]. European Journal of Soil Biology, 2011, 47(6): 374 − 379. doi: 10.1016/j.ejsobi.2011.08.009
    [24] Li X G, Ding C F, Ke H, et al. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biology & Biochemistry, 2014, 78: 149 − 159.
    [25] Han Q, Ma Q, Chen Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean[J]. ISME Journal, 2020, 14(8): 1915 − 1928. doi: 10.1038/s41396-020-0648-9
    [26] Hu A Y, Xu S N, Qin D N, et al. Role of silicon in mediating phosphorus imbalance in plants[J]. Plants-Basel, 2021, 10(1): 51.
    [27] Castrillo G, Teixeira P J P L, Paredes S H, et al. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646): 513 − 518. doi: 10.1038/nature21417
    [28] 李荣坦, 姚华开, 刘岳飞, 等. 低磷胁迫对番茄根系生长及根际土壤细菌多样性的影响[J]. 园艺学报, 2016, 43(03): 473 − 484.
    [29] 陆 涛, 李 燕, 傅正伟, 等. 农药对根际微生物群落的影响及潜在风险[J]. 农药学学报, 2019, 21(5): 865 − 870.
    [30] Kremer R J, Means N E. Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms[J]. European Journal of Agronomy, 2009, 31(3): 153 − 161. doi: 10.1016/j.eja.2009.06.004
    [31] Chen S, Li X X, Lavoie M, et al. Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice[J]. Journal of Environmental Science, 2017, 51: 352 − 360. doi: 10.1016/j.jes.2016.06.027
    [32] Qian H F, Zhu Y C, Chen S, et al. Interacting effect of diclofop-methyl on the rice rhizosphere microbiome and denitrification[J]. Pesticide Biochemistry and Physiology, 2018, 146: 90 − 96. doi: 10.1016/j.pestbp.2018.03.002
    [33] Yang X M, Bento C P M, Chen H, et al. Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil[J]. Environmental Pollution, 2018, 242: 338 − 347. doi: 10.1016/j.envpol.2018.07.006
    [34] Amanda J B, Gary D B, David C, et al. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations[J]. Biological Reviews, 2012, 87(1): 52 − 71. doi: 10.1111/j.1469-185X.2011.00184.x
    [35] John V G, Greg W D, Susan E H, et al. Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus[J]. Journal of Integrative Plant Biology, 2016, 58(4): 373 − 387. doi: 10.1111/jipb.12437
    [36] Yuan J, Zhao J, Wen T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome, 2018, 6: 156. doi: 10.1186/s40168-018-0537-x
    [37] Effmert U, Kalderás J, Warnke R, et al. Volatile Mediated Interactions Between Bacteria and Fungi in the Soil[J]. Journal of Chemical Ecology, 2012, 38: 665 − 703. doi: 10.1007/s10886-012-0135-5
    [38] Werner S, Polle A, Brinkmann N. Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms[J]. Applied Microbiology and Biotechnology, 2016, 100: 8651 − 8665. doi: 10.1007/s00253-016-7792-1
    [39] Schulz-Bohm K, Gerards S, Hundscheid M, et al. Calling from distance: attraction of soil bacteria by plant root volatiles[J]. ISME Journal, 2018, 12(5): 1252 − 1262. doi: 10.1038/s41396-017-0035-3
    [40] Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444(7117): 323 − 329. doi: 10.1038/nature05286
    [41] Han G Z. Origin and evolution of the plant immune system[J]. New Phytologist, 2019, 222(1): 70 − 83. doi: 10.1111/nph.15596
    [42] Rodrigo M, Paolina G, Jos M, et al. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiology Reviews, 2013, 37(5): 634 − 663. doi: 10.1111/1574-6976.12028
    [43] Lebeis S L, Paredes S H, Lundberg D S, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa[J]. Science, 2015, 349(6250): 860 − 864. doi: 10.1126/science.aaa8764
    [44] Carvalhais L C, Dennis P G, Badri D V, et al. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes[J]. Molecular Plant-Microbe Interactions, 2015, 28(9): 1049 − 1058. doi: 10.1094/MPMI-01-15-0016-R
    [45] Hao Z P, Xie W, Chen B D. Arbuscular Mycorrhizal Symbiosis Affects Plant Immunity to Viral Infection and Accumulation[J]. Viruses, 2019, 11: 534. doi: 10.3390/v11060534
    [46] Pescador L, Fernandez I, María J P, et al. Nitric oxide signalling in roots is required for MYB72-dependent systemic resistance induced by Trichoderma volatile compounds in Arabidopsis[J]. Journal of Experimental Botany, 2022, 73(2): 584 − 595. doi: 10.1093/jxb/erab294
    [47] 周文杰, 吕德国, 秦嗣军. 植物与根际微生物相互作用关系研究进展[J]. 吉林农业大学学报, 2016, 38(3): 253 − 260.
    [48] 孙建光, 胡海燕, 刘 君, 等. 农田环境中固氮菌的促生潜能与分布特点[J]. 中国农业科学, 2012, 45(8): 1532 − 1544. doi: 10.3864/j.issn.0578-1752.2012.08.009
    [49] 秦子娴, 朱 敏, 郭 涛. 干旱胁迫下丛枝菌根真菌对玉米生理生化特性的影响[J]. 植物营养与肥料学报, 2013, 19(2): 510 − 516. doi: 10.11674/zwyf.2013.0229
    [50] Jin H, Liu J, Liu J, et al. Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: a review[J]. Science China-Life Sciences, 2012, 55(6): 474 − 482. doi: 10.1007/s11427-012-4330-y
    [51] Leonor R, Marcela S, Irene M, et al. Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: A well equipped team to preserve plant iron homeostasis[J]. Plant Science, 2011, 181(5): 582 − 592. doi: 10.1016/j.plantsci.2011.04.006
    [52] Duijff B J, Recorbet G, Bakker P A H M, et al. Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of non-pathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358[J]. Phytopathology, 1999, 89(11): 1073 − 1079. doi: 10.1094/PHYTO.1999.89.11.1073
    [53] Del C O M, Macias R L, Santoyo G, et al. Medicago truncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium meliloti[J]. Folia Microbiologica, 2013, 58(6): 579 − 585. doi: 10.1007/s12223-013-0243-9
    [54] Basharat H, Muzafar Z, Shabeena F, et al. Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops[J]. Sustainability, 2021, 13(5): 2856. doi: 10.3390/su13052856
    [55] Yang Y F, Wu L W, Lin Q Y, et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland[J]. Global Change Biology, 2013, 19(2): 637 − 648. doi: 10.1111/gcb.12065
    [56] Edwards J, Johnson C, Santos M C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911 − E920.
    [57] 李雪萍. 青藏高原青稞根腐类病害及其对根际土壤微生态的影响[D]. 兰州: 甘肃农业大学, 2017.
    [58] James E S, Lucy R S. The Role of Viruses in the Phytobiome[J]. Annual Review of Virology, 2018, 5: 93 − 111. doi: 10.1146/annurev-virology-092917-043421
    [59] Horbach R, Navarro Q A R, Knogge W, et al. When and how to kill a plant cell: Infection strategies of plant pathogenic fungi[J]. Journal of Plant Physiology, 2011, 168(1): 51 − 62. doi: 10.1016/j.jplph.2010.06.014
    [60] 张贞明, 柏玉晶, 阿不满, 等. 甘肃省武威市苜蓿镰孢根腐病菌的鉴定[J]. 草业科学, 2018, 35(12): 2998 − 3003.
    [61] Antoine S, Hériché M, Boussageon R, et al. A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges[J]. Mycorrhiza, 2021, 31: 637 − 653. doi: 10.1007/s00572-021-01053-2
    [62] 胡玉金, 冯 敏, 郭文秀, 等. 作物根结线虫病害综合防治技术概述[J]. 山东农业科学, 2019, 51(4): 149 − 156.
    [63] Xiong Y, Guo Y C, Raja A A K, et al. Understanding the pathogenicity of Pochonia chlamydosporia to root knot nematode through omics approaches and action mechanism[J]. Biological Control, 2021, 162: 104726. doi: 10.1016/j.biocontrol.2021.104726
    [64] 张 洁, 杨丽荣, 夏明聪, 等. 小麦孢囊线虫病综合防治研究进展[J]. 河南农业科学, 2017, 46(5): 8 − 14.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  6
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 录用日期:  2022-04-01
  • 修回日期:  2022-02-16
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回