留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

秸秆与生物炭对东北黑土团聚体碳氮磷循环关键酶活性影响

石卓 邓超 罗莎莎 王少杰 高强

石 卓, 邓 超, 罗莎莎, 王少杰, 高 强. 秸秆与生物炭对东北黑土团聚体碳氮磷循环关键酶活性影响[J]. 土壤通报, 2023, 54(5): 1128 − 1136 doi: 10.19336/j.cnki.trtb.2022012001
引用本文: 石 卓, 邓 超, 罗莎莎, 王少杰, 高 强. 秸秆与生物炭对东北黑土团聚体碳氮磷循环关键酶活性影响[J]. 土壤通报, 2023, 54(5): 1128 − 1136 doi: 10.19336/j.cnki.trtb.2022012001
SHI Zhuo, DENG Chao, LUO Sha-sha, WANG Shao-jie, GAO Qiang. Effects of Straw and Biochar on the Activities of Key Enzymes in Carbon, Nitrogen and Phosphorus Cycle of Aggregates in Northeast Black Soil[J]. Chinese Journal of Soil Science, 2023, 54(5): 1128 − 1136 doi: 10.19336/j.cnki.trtb.2022012001
Citation: SHI Zhuo, DENG Chao, LUO Sha-sha, WANG Shao-jie, GAO Qiang. Effects of Straw and Biochar on the Activities of Key Enzymes in Carbon, Nitrogen and Phosphorus Cycle of Aggregates in Northeast Black Soil[J]. Chinese Journal of Soil Science, 2023, 54(5): 1128 − 1136 doi: 10.19336/j.cnki.trtb.2022012001

秸秆与生物炭对东北黑土团聚体碳氮磷循环关键酶活性影响

doi: 10.19336/j.cnki.trtb.2022012001
基金项目: 国家自然科学基金(41907081)和吉林省自然科学基金(20200201017JC)项目资助
详细信息
    作者简介:

    石卓:石 卓(1996−),男,硕士研究生,主要从事土壤养分循环研究。E-mail: 18943922271@163.com

    通讯作者:

    E-mail: wsj_jlau@163.com

    E-mail: gyt199962@163.com

  • 中图分类号: S152.4;S153.6

Effects of Straw and Biochar on the Activities of Key Enzymes in Carbon, Nitrogen and Phosphorus Cycle of Aggregates in Northeast Black Soil

  • 摘要:   目的  秸秆与生物炭施用会显著影响土壤酶活性,而不同粒径土壤团聚体微域环境的变化,可能减弱或延缓酶的响应强度,因此探讨土壤团聚体内酶活性对秸秆与生物炭施用的响应十分必要。  方法  依托设置在东北黑土已开展五年的田间定位试验,探究每年秸秆还田(SR,5 t hm−2)和单次施用生物炭(BR,30 t hm−2)以及二者联合(BS,5 t hm−2 + 30 t hm−2)对不同粒径土壤团聚体内碳、氮、磷循环相关酶活性的影响。  结果  与对照相比,SR显著提高各粒径团聚体中多酚氧化酶和β-1,4-葡萄糖苷酶活性,平均增幅达33.4%和25.6%;而BR则显著提高了 > 2 mm、< 0.25 mm粒径中多酚氧化酶活性及0.25 ~ 2 mm粒径中β-1,4-葡萄糖苷酶活性,平均增幅分别为30.2%、67.4%和44.4%。在氮循环相关酶方面,BR、SR和BS处理均显著增加 > 2 mm、< 0.25 mm粒径中的氧化亚氮还原酶活性,0.25 ~ 2 mm粒径中的硝酸盐还原酶、亚硝酸盐还原酶、一氧化氮还原酶活性;SR显著提高了 < 0.25 mm粒径中N-乙酰-β-D氨基葡萄糖苷酶活性,增幅达35.5%,而BR则显著提高了0.25 ~ 2 mm粒径中N-乙酰-β-D氨基葡萄糖苷酶活性,增幅达42.0%。  结论  在本试验条件下,以16种酶活性的几何平均数作为酶的综合活性指标发现,秸秆还田显著提高各粒径土壤团聚体中酶活性的几何平均数;而生物炭则显著增加微团聚体中酶活性的几何平均数,却降低了大团聚体中酶活性的几何平均数。因此,从土壤酶活性角度考虑,在东北黑土中,秸秆还田更能促进土壤生物肥力的提高。
  • 图  1  生物炭和秸秆对土壤碳循环酶活性的影响

    不同小写字母表示同一粒径中不同处理间差异达到显著水平(P < 0.05),不同大写字母表示不同粒径间总体酶活性(不分处理)差异达0.05显著水平(P < 0.05)。B表示生物炭(Biochar);S表示秸秆(Straw). “*”表示在0.05水平上有显著交互作用,“**”表示在0.01水平上有显著交互作用,“***”表示在0.001水平上有显著交互作用,下同。

    Figure  1.  Effects of biochar and straw on soil carbon cycling enzyme activities

    图  2  生物炭和秸秆对土壤氮循环酶活性的影响

    Figure  2.  Effects of biochar and straw on soil nitrogen cycling enzyme activities

    图  3  生物炭和秸秆对土壤碱性磷酸酶、FDA水解酶、辅酶F420活性的影响

    Figure  3.  Effects of biochar and straw on the activities of alkaline phosphatase, FDA hydrolase and coenzyme F420 in soil

    图  4  主要碳氮磷循环酶化学计量特征

    Figure  4.  Chemometric characteristics of major carbon, nitrogen and phosphorus cycle enzymes

    表  1  各处理酶活性综合指数

    Table  1.   Comprehensive index of enzyme activities of each treatment.

    处理
    Treatment
    酶活性综合指数
    Comprehensive index of enzyme activities
    > 2 mm0.25 ~ 2 mm< 0.25 mm
    CK 898.7 ± 6.5 Ca 896.5 ± 1.4 Ca 910.0 ± 2.4 Ca
    BR 878.4 ± 1.8 Dc 890.9 ± 1.3 Cb 930.2 ± 4.4 Ba
    SR 936.6 ± 2.8 Ab 933.5 ± 3.2 Bb 1012.2 ± 2.6 Aa
    BS 923.0 ± 2.7 Bb 1009.6 ± 1.0 Aa 897.9 ± 3.3 Dc
      注:纵向不同大写字母表示同粒径不同处理间差异显著(P < 0.05),横向不同小写字母表现为同处理不同粒径间差异显著(P < 0.05)。
    下载: 导出CSV
  • [1] Stone M M, Weiss M S, Goodale, C. S. , et al Temperature sensitivity of soil enzyme kinetics under Nfertilization in two temperate forests[J]. Global Change Biology, 2012, 18(3): 1173 − 1184.
    [2] 宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力[J]. 植物营养与肥料学报, 2018, 24(1): 1 − 21.
    [3] 靳海洋, 蒋 向, 杨习文, 等. 作物秸秆直接还田思考与秸秆多途径利用商榷[J]. 中国农学通报, 2016, 32(9): 142 − 147.
    [4] 王立刚, 杨 黎, 贺 美, 等. 全球黑土区土壤有机质变化态势及其管理技术[J]. 中国土壤与肥料, 2016, (6): 1 − 7.
    [5] 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721 − 729.
    [6] 黎嘉成, 高 明, 田 冬, 等. 秸秆及生物炭还田对土壤有机碳及其活性组分的影响[J]. 草业学报, 2018, 27(5): 39 − 50.
    [7] 张千丰, 王光华. 生物炭理化性质及对土壤改良效果的研究进展[J]. 土壤与作物, 2012, 1(4): 219 − 226.
    [8] 矫丽娜, 李志洪, 殷程程, 等. 高量秸秆不同深度还田对黑土有机质组成和酶活性的影响[J]. 土壤学报, 2015, 52(3): 665 − 672.
    [9] 张英英. 不同耕作措施下旱作农田土壤活性有机碳组分与酶活性关系研究[D]. 兰州: 甘肃农业大学, 2016.
    [10] Elzobair, K. A. , Stromberger, M. E. , Ippolito, J. A. , et al. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere, 2016, 142: 145-152.
    [11] Oleszczuk P, Jos'ko I, Futa B, et al. Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil[J]. Geoderma, 2014, 214-215: 10 − 18. doi: 10.1016/j.geoderma.2013.10.010
    [12] Bach E M, Hofmockel K S. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity[J]. Soil Biology and Biochemistry, 2014, 69(1): 54 − 62.
    [13] Chen X F, Li Z, Jiang C et al. Microbial community and functional diversity associated with different aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20 years[J]. Journal of Soils and Sediments, 2015, 15(2): 292 − 301. doi: 10.1007/s11368-014-0981-6
    [14] I. M. Young, J. W. Crawford. Interactions and Self-Organization in the Soil-Microbe Complex[J]. Science, 2004, 304(5677): 1634 − 1637. doi: 10.1126/science.1097394
    [15] Oades J M. The role of biology in the formation, stabilization and degradation of soil structure. Soil structure/soil biota interrelationships[J]. Geoderma, 1993, 56: 377 − 400. doi: 10.1016/0016-7061(93)90123-3
    [16] Zhang H, Wang S, Zhang J, et al. Biochar application enhances microbial interactions in mega-aggregates of farmland black soil[J]. Soil and Tillage Research, 2021, 213: 105145. doi: 10.1016/j.still.2021.105145
    [17] R García-Ruiz, Ochoa V, Hinojosa M B, et al. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems[J]. Soil Biology & Biochemistry, 2008, 40(9): 2137 − 2145.
    [18] Cosmas Parwada, Johan Tol. Effects of litter quality on macroaggregates reformation and soil stability in different soil horizons[J]. Environment, Development and Sustainability, 2019, 21(3): 1321 − 1339. doi: 10.1007/s10668-018-0089-z
    [19] Guo K, Zhao Y, Liu Y, et al. Pyrolysis temperature of Biochar affects ecoenzymatic stoichiometry and microbial nutrient-use efficiency in a bamboo forest soil[J]. Geoderma, 2020, 363: 114 − 162.
    [20] Laird D A, Fleming P, Davis D D, et al. Impact of Biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 443 − 449.
    [21] 余炜敏, 石永锋, 王荣萍, 等. 改性生物炭对小白菜生长和磷素吸收的影响[J]. 生态环境学报, 2018, 27(10): 1878 − 1882.
    [22] Cayuela M L, Zwieten L V, Singh B P, et al. Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis[J]. Agriculture, Ecosystems & Environment:An International Journal for Scientific Research on the Relationship of Agriculture and Food Production to the Biosphere, 2014, 191: 5 − 16.
    [23] 马寰菲, 胡 汗, 李 益, 等. 秦岭不同海拔土壤团聚体稳定性及其与土壤酶活性的耦合关系[J/OL]. 环境科学, 2021, 42(9) : 4510 − 4519.
    [24] Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252 − 1264. doi: 10.1111/j.1461-0248.2008.01245.x
    [25] 王青霞, 李美霖, 陈喜靖, 等. 秸秆还田下氮肥运筹对水稻各生育期土壤微生物群落结构的影响[J]. 应用生态学报, 2020, 31(03): 935 − 944.
    [26] 朱孟涛, 刘秀霞, 王佳盟, 等. 生物质炭对水稻土团聚体微生物多样性的影响[J]. 生态学报, 2020, 40(5): 1505 − 1516.
    [27] 汪景宽, 汤方栋, 张继宏, 等. 不同肥力棕壤及其微团聚体中酶活性比较[J]. 沈阳农业大学学报, 2000, 31(2): 185 − 189.
    [28] JastrowJD, Amonette JE, Bailey VL. Mechanisms con-trolling soil carbon turnover and their potential applica-tion for enhancing carbon sequestration[J]. Climatic Change, 2007, (80): 5 − 23.
    [29] Marhan S, Kandeler E, Scheu S. Phospholipid fatty acid proiles and xylanase activity in particle size fractions of forest soil and casts of Lumbricus terrestrisL. (Oli-gochaeta, Lumbricidae)[J]. Applied Soil Ecology, 2007, (35): 412 − 422.
    [30] Zhang M, Cheng G, Feng H, et al. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China[J]. Environmental Science and Pollution Research, 2017, 24(11): 10108 − 10120. doi: 10.1007/s11356-017-8505-8
    [31] Mikha M M, Rice C W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen[J]. Soil Sci Soc Am J, 2004, 68(3): 809 − 816.
    [32] Chen Z, Luo X, Hu R, et al. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analysesinap addysoil[J]. MicrobialEcology, 2010, 60(4): 850 − 861.
    [33] 白红英, 韩建刚, 赵一萍. 不同土层土壤理化生性状与反硝化酶活性N2O排放通量的相关性研究[J]. 农业环境保护, 2002, 21(3): 193 − 196.
    [34] 李 硕, 把余玲, 李有兵, 等. 添加作物秸秆对土壤有机碳组分和酶活性的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(6): 153 − 161.
    [35] H Yang, Ma J, Rong Z, et al. Wheat Straw Return Influences Nitrogen-Cycling and Pathogen Associated Soil Microbiota in a Wheat–Soybean Rotation System[J]. Frontiers in Microbiology, 2019, 10: 1811. doi: 10.3389/fmicb.2019.01811
    [36] Kong A Y Y, Scow K M, Córdova-Kreylos A L, et al. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems[J]. Soil Biology and Biochemistry, 2011, 43(1): 20 − 30. doi: 10.1016/j.soilbio.2010.09.005
    [37] 丁爱芳, 潘根兴, 李恋卿. 太湖地区几种水稻土团聚体颗粒组中PAHs的分布及其环境意义[J]. 环境科学学报, 2006, 26(2): 293 − 299.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  7
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 录用日期:  2022-11-09
  • 修回日期:  2022-08-04
  • 网络出版日期:  2023-10-21
  • 刊出日期:  2023-10-06

目录

    /

    返回文章
    返回