Effects of Straw and Biochar on the Activities of Key Enzymes in Carbon, Nitrogen and Phosphorus Cycle of Aggregates in Northeast Black Soil
-
摘要:
目的 秸秆与生物炭施用会显著影响土壤酶活性,而不同粒径土壤团聚体微域环境的变化,可能减弱或延缓酶的响应强度,因此探讨土壤团聚体内酶活性对秸秆与生物炭施用的响应十分必要。 方法 依托设置在东北黑土已开展五年的田间定位试验,探究每年秸秆还田(SR,5 t hm−2)和单次施用生物炭(BR,30 t hm−2)以及二者联合(BS,5 t hm−2 + 30 t hm−2)对不同粒径土壤团聚体内碳、氮、磷循环相关酶活性的影响。 结果 与对照相比,SR显著提高各粒径团聚体中多酚氧化酶和β-1,4-葡萄糖苷酶活性,平均增幅达33.4%和25.6%;而BR则显著提高了 > 2 mm、< 0.25 mm粒径中多酚氧化酶活性及0.25 ~ 2 mm粒径中β-1,4-葡萄糖苷酶活性,平均增幅分别为30.2%、67.4%和44.4%。在氮循环相关酶方面,BR、SR和BS处理均显著增加 > 2 mm、< 0.25 mm粒径中的氧化亚氮还原酶活性,0.25 ~ 2 mm粒径中的硝酸盐还原酶、亚硝酸盐还原酶、一氧化氮还原酶活性;SR显著提高了 < 0.25 mm粒径中N-乙酰-β-D氨基葡萄糖苷酶活性,增幅达35.5%,而BR则显著提高了0.25 ~ 2 mm粒径中N-乙酰-β-D氨基葡萄糖苷酶活性,增幅达42.0%。 结论 在本试验条件下,以16种酶活性的几何平均数作为酶的综合活性指标发现,秸秆还田显著提高各粒径土壤团聚体中酶活性的几何平均数;而生物炭则显著增加微团聚体中酶活性的几何平均数,却降低了大团聚体中酶活性的几何平均数。因此,从土壤酶活性角度考虑,在东北黑土中,秸秆还田更能促进土壤生物肥力的提高。 Abstract:Objective Straw and biochar returning significantly affects soil enzyme activities, and changes in the microdomain environment of soil aggregates at different sizes may be attenuated the intensity of enzyme response, so it is necessary to explore the response of enzyme activities within soil aggregates to straw and biochar returning. Method This study investigated the effects of annual straw returning (SR, 5 t hm−2), single application of biochar (BR, 30 t hm−2) and combined application of biochar and straw (BS, 5 t hm−2 + 30 t hm−2), on enzyme activities related to soil carbon, nitrogen and phosphorus cycling, which was based on a field location trial for five years in black soil. Result Compared with CK, SR significantly increased polyphenol oxidase and β-1,4-glucosidase activities in all particle sizes with an average increase of 33.4% and 25.6%, while BR significantly increased polyphenol oxidase activities in particles of > 2 mm and < 0.25 mm and β-1,4-glucosidase activities in particle of 0.25 - 2 mm, with an average increase of 30.2%, 67.4% and 44.4%. In terms of nitrogen cycle-related enzymes, BR, SR and BS treatments significantly increased nitrous oxide reductase activities in > 2 mm and < 0.25 mm particle size, nitrate reductase, nitrite reductase and nitric oxide reductase activities in 0.25 - 2 mm particle size. SR significantly increased N-acetyl-β-D aminoglucosidase activities in < 0.25 mm particle size by 35.5%, while BR significantly increased N-acetyl-β-D-aminoglucosidase activities in 0.25 - 2 mm particle size by 42.0%. Conclusion The geometric mean of 16 enzyme activities (GMea) was used as an indicator of the combined enzyme activities, and it was found that straw return significantly increased GMea in soil agglomerates of all particle sizes under the present experimental conditions, while biochar significantly increased GMea in micro-aggregates but decreased GMea in macro-aggregates. Therefore, from the perspective of soil enzyme activities, straw return is more effective in promoting soil bio-fertility in northeastern black soils of China, straw return to the soil is more likely to promote the improvement of soil biological fertility. -
Key words:
- Straw /
- Biochar /
- Black soil /
- Soil aggregate /
- Soil enzyme
-
表 1 各处理酶活性综合指数
Table 1. Comprehensive index of enzyme activities of each treatment.
处理
Treatment酶活性综合指数
Comprehensive index of enzyme activities> 2 mm 0.25 ~ 2 mm < 0.25 mm CK 898.7 ± 6.5 Ca 896.5 ± 1.4 Ca 910.0 ± 2.4 Ca BR 878.4 ± 1.8 Dc 890.9 ± 1.3 Cb 930.2 ± 4.4 Ba SR 936.6 ± 2.8 Ab 933.5 ± 3.2 Bb 1012.2 ± 2.6 Aa BS 923.0 ± 2.7 Bb 1009.6 ± 1.0 Aa 897.9 ± 3.3 Dc 注:纵向不同大写字母表示同粒径不同处理间差异显著(P < 0.05),横向不同小写字母表现为同处理不同粒径间差异显著(P < 0.05)。 -
[1] Stone M M, Weiss M S, Goodale, C. S. , et al Temperature sensitivity of soil enzyme kinetics under Nfertilization in two temperate forests[J]. Global Change Biology, 2012, 18(3): 1173 − 1184. [2] 宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力[J]. 植物营养与肥料学报, 2018, 24(1): 1 − 21. [3] 靳海洋, 蒋 向, 杨习文, 等. 作物秸秆直接还田思考与秸秆多途径利用商榷[J]. 中国农学通报, 2016, 32(9): 142 − 147. [4] 王立刚, 杨 黎, 贺 美, 等. 全球黑土区土壤有机质变化态势及其管理技术[J]. 中国土壤与肥料, 2016, (6): 1 − 7. [5] 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721 − 729. [6] 黎嘉成, 高 明, 田 冬, 等. 秸秆及生物炭还田对土壤有机碳及其活性组分的影响[J]. 草业学报, 2018, 27(5): 39 − 50. [7] 张千丰, 王光华. 生物炭理化性质及对土壤改良效果的研究进展[J]. 土壤与作物, 2012, 1(4): 219 − 226. [8] 矫丽娜, 李志洪, 殷程程, 等. 高量秸秆不同深度还田对黑土有机质组成和酶活性的影响[J]. 土壤学报, 2015, 52(3): 665 − 672. [9] 张英英. 不同耕作措施下旱作农田土壤活性有机碳组分与酶活性关系研究[D]. 兰州: 甘肃农业大学, 2016. [10] Elzobair, K. A. , Stromberger, M. E. , Ippolito, J. A. , et al. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere, 2016, 142: 145-152. [11] Oleszczuk P, Jos'ko I, Futa B, et al. Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil[J]. Geoderma, 2014, 214-215: 10 − 18. doi: 10.1016/j.geoderma.2013.10.010 [12] Bach E M, Hofmockel K S. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity[J]. Soil Biology and Biochemistry, 2014, 69(1): 54 − 62. [13] Chen X F, Li Z, Jiang C et al. Microbial community and functional diversity associated with different aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20 years[J]. Journal of Soils and Sediments, 2015, 15(2): 292 − 301. doi: 10.1007/s11368-014-0981-6 [14] I. M. Young, J. W. Crawford. Interactions and Self-Organization in the Soil-Microbe Complex[J]. Science, 2004, 304(5677): 1634 − 1637. doi: 10.1126/science.1097394 [15] Oades J M. The role of biology in the formation, stabilization and degradation of soil structure. Soil structure/soil biota interrelationships[J]. Geoderma, 1993, 56: 377 − 400. doi: 10.1016/0016-7061(93)90123-3 [16] Zhang H, Wang S, Zhang J, et al. Biochar application enhances microbial interactions in mega-aggregates of farmland black soil[J]. Soil and Tillage Research, 2021, 213: 105145. doi: 10.1016/j.still.2021.105145 [17] R García-Ruiz, Ochoa V, Hinojosa M B, et al. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems[J]. Soil Biology & Biochemistry, 2008, 40(9): 2137 − 2145. [18] Cosmas Parwada, Johan Tol. Effects of litter quality on macroaggregates reformation and soil stability in different soil horizons[J]. Environment, Development and Sustainability, 2019, 21(3): 1321 − 1339. doi: 10.1007/s10668-018-0089-z [19] Guo K, Zhao Y, Liu Y, et al. Pyrolysis temperature of Biochar affects ecoenzymatic stoichiometry and microbial nutrient-use efficiency in a bamboo forest soil[J]. Geoderma, 2020, 363: 114 − 162. [20] Laird D A, Fleming P, Davis D D, et al. Impact of Biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 443 − 449. [21] 余炜敏, 石永锋, 王荣萍, 等. 改性生物炭对小白菜生长和磷素吸收的影响[J]. 生态环境学报, 2018, 27(10): 1878 − 1882. [22] Cayuela M L, Zwieten L V, Singh B P, et al. Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis[J]. Agriculture, Ecosystems & Environment:An International Journal for Scientific Research on the Relationship of Agriculture and Food Production to the Biosphere, 2014, 191: 5 − 16. [23] 马寰菲, 胡 汗, 李 益, 等. 秦岭不同海拔土壤团聚体稳定性及其与土壤酶活性的耦合关系[J/OL]. 环境科学, 2021, 42(9) : 4510 − 4519. [24] Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252 − 1264. doi: 10.1111/j.1461-0248.2008.01245.x [25] 王青霞, 李美霖, 陈喜靖, 等. 秸秆还田下氮肥运筹对水稻各生育期土壤微生物群落结构的影响[J]. 应用生态学报, 2020, 31(03): 935 − 944. [26] 朱孟涛, 刘秀霞, 王佳盟, 等. 生物质炭对水稻土团聚体微生物多样性的影响[J]. 生态学报, 2020, 40(5): 1505 − 1516. [27] 汪景宽, 汤方栋, 张继宏, 等. 不同肥力棕壤及其微团聚体中酶活性比较[J]. 沈阳农业大学学报, 2000, 31(2): 185 − 189. [28] JastrowJD, Amonette JE, Bailey VL. Mechanisms con-trolling soil carbon turnover and their potential applica-tion for enhancing carbon sequestration[J]. Climatic Change, 2007, (80): 5 − 23. [29] Marhan S, Kandeler E, Scheu S. Phospholipid fatty acid proiles and xylanase activity in particle size fractions of forest soil and casts of Lumbricus terrestrisL. (Oli-gochaeta, Lumbricidae)[J]. Applied Soil Ecology, 2007, (35): 412 − 422. [30] Zhang M, Cheng G, Feng H, et al. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China[J]. Environmental Science and Pollution Research, 2017, 24(11): 10108 − 10120. doi: 10.1007/s11356-017-8505-8 [31] Mikha M M, Rice C W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen[J]. Soil Sci Soc Am J, 2004, 68(3): 809 − 816. [32] Chen Z, Luo X, Hu R, et al. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analysesinap addysoil[J]. MicrobialEcology, 2010, 60(4): 850 − 861. [33] 白红英, 韩建刚, 赵一萍. 不同土层土壤理化生性状与反硝化酶活性N2O排放通量的相关性研究[J]. 农业环境保护, 2002, 21(3): 193 − 196. [34] 李 硕, 把余玲, 李有兵, 等. 添加作物秸秆对土壤有机碳组分和酶活性的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(6): 153 − 161. [35] H Yang, Ma J, Rong Z, et al. Wheat Straw Return Influences Nitrogen-Cycling and Pathogen Associated Soil Microbiota in a Wheat–Soybean Rotation System[J]. Frontiers in Microbiology, 2019, 10: 1811. doi: 10.3389/fmicb.2019.01811 [36] Kong A Y Y, Scow K M, Córdova-Kreylos A L, et al. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems[J]. Soil Biology and Biochemistry, 2011, 43(1): 20 − 30. doi: 10.1016/j.soilbio.2010.09.005 [37] 丁爱芳, 潘根兴, 李恋卿. 太湖地区几种水稻土团聚体颗粒组中PAHs的分布及其环境意义[J]. 环境科学学报, 2006, 26(2): 293 − 299. -