留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于文献计量分析有机质影响土壤重金属生物有效性的研究热点和趋势

张梦妍 王成尘 宗大鹏 田稳 谢瑜媚 向萍

张梦妍, 王成尘, 宗大鹏, 田 稳, 谢瑜媚, 向 萍. 基于文献计量分析有机质影响土壤重金属生物有效性的研究热点和趋势[J]. 土壤通报, 2022, 53(5): 1248 − 1260 doi: 10.19336/j.cnki.trtb.2022012601
引用本文: 张梦妍, 王成尘, 宗大鹏, 田 稳, 谢瑜媚, 向 萍. 基于文献计量分析有机质影响土壤重金属生物有效性的研究热点和趋势[J]. 土壤通报, 2022, 53(5): 1248 − 1260 doi: 10.19336/j.cnki.trtb.2022012601
ZHANG Meng-yan, WANG Cheng-chen, ZONG Da-peng, TIAN Wen, XIE Yu-mei, XIANG Ping. Research Hotspots and Trends of Organic Matter Affecting Bioavailability of Heavy Metals in Soil based on Bibliometrics Analysis[J]. Chinese Journal of Soil Science, 2022, 53(5): 1248 − 1260 doi: 10.19336/j.cnki.trtb.2022012601
Citation: ZHANG Meng-yan, WANG Cheng-chen, ZONG Da-peng, TIAN Wen, XIE Yu-mei, XIANG Ping. Research Hotspots and Trends of Organic Matter Affecting Bioavailability of Heavy Metals in Soil based on Bibliometrics Analysis[J]. Chinese Journal of Soil Science, 2022, 53(5): 1248 − 1260 doi: 10.19336/j.cnki.trtb.2022012601

基于文献计量分析有机质影响土壤重金属生物有效性的研究热点和趋势

doi: 10.19336/j.cnki.trtb.2022012601
基金项目: 云南省教育厅科学研究基金项目(2022J0508)、云南农业基础研究联合专项重点项目(202101BD070001-023)、国家林业和草原局林草科技创新青年拔尖 人才项目 (2020132613)、国家自然科学基金项目(41967026)和云南省高层次人才引进计划青年人才项目(YNQR-QNRC-2018-049)资助
详细信息
    作者简介:

    张梦妍(1990−),女,河北石家庄人,博士研究生,研究实习员,主要从事土壤污染及健康方面研究, E-mail: zhang_mengyan@126.com

    通讯作者:

    E-mail: xiangping@swfu.edu.cn

  • 中图分类号: X53

Research Hotspots and Trends of Organic Matter Affecting Bioavailability of Heavy Metals in Soil based on Bibliometrics Analysis

  • 摘要: 基于CNKI及Web of Science数据库,利用Citespace软件,对该方面的研究主要结构、研究基础、热点问题及趋势等开展分析,探讨有机质对重金属生物有效性的影响。以中科院为代表的中国研究机构对该领域的研究做出了巨大贡献,发文总量占31.8%。该领域大多数文献发表在Science of the Total Environment及Chemosphere等国际期刊。根据WoS文献共被引分析,得到该领域研究共识主要有三个方面:一是重金属形态对其生物有效性影响巨大;二是植物吸收、动物积累重金属与有机质及其他环境因素密切相关;三是有机质与重金属的相互作用如溶解-沉淀、氧化-还原等是影响重金属迁移转化及生物有效性的机制。根据关键词共现分析,得到该领域国际研究的热点类型共11类。通过WoS文献高被引文献分析,研究主要集中在不同来源有机质与重金属在固相、液相体系环境中相互作用,对重金属的活化或固定的作用机制及相关应用。根据关键词突现分析,该领域“大米”、“生物炭”、“修复”等是目前国际研究热点。
  • 图  1  1991 ~ 2021年发文量

    Figure  1.  Publications from 1991 to 2021

    图  2  有机质作用下重金属生物有效性研究维度图

    Figure  2.  Dimension diagram of bioavailability of heavy metals under the influence of organic matter

    图  3  CNKI文献关键词共现图

    Figure  3.  Co-occurrence of keywords in CNKI

    图  4  WoS文献关键词共现图

    Figure  4.  Co-occurrence of keywords in WoS

    图  5  WoS文献关键词突现图

    Figure  5.  Key words flash map of WoS

    图  6  CNKI文献关键词突现图

    Figure  6.  Key words flash map of CNKI

    表  1  外文文献发表该领域论文最多的5个国家

    Table  1.   Top 5 countries published the articles in foreign literature

    发文国家
    Country
    数量(篇)
    Amount
    中心度
    Centrality
    发文比例(%)
    Proportion
    中国 543 0.55 31.8
    美国 162 0.62 9.5
    西班牙 99 0.14 5.8
    法国 73 0.18 4.3
    巴西 69 0.02 4.0
    下载: 导出CSV

    表  2  发文量前10位的研究机构

    Table  2.   The top 10 research Institutions published the articles

    标注外文研究机构
    Research Institute
    发文量(篇)
    Amount
    发文比例(%)
    Proportion
    标注中文研究机构
    Research Institute
    发文量(篇)
    Amount
    发文比例(%)
    Proportion
    中国科学院
    165 9.7 浙江大学 36 6.1
    法国国家科学研究中心
    53 3.1 西北农林科技大学 26 4.3
    中科院南京土壤研究所
    47 2.8 中国科学院 24 4.0
    中国科学院大学
    44 2.6 南京农业大学 22 3.7
    法国国家农业食品与环境研究院

    42 2.5 中国农业科学院 19 3.2
    浙江大学
    40 2.3 西南大学 18 3.0
    西北农林科技大学
    37 2.2 四川农业大学 14 2.4
    西班牙科学研究会

    36 2.1 兰州大学、湖南农业大学 12 2.0
    埃及知识库
    34 2.0 华南农业大学、华中农业大学 10 1.7
    南澳大学
    29 1.7
    下载: 导出CSV

    表  3  主要发文期刊统计表

    Table  3.   Main journals published the articles

    外文期刊
    Journal
    发文量(篇)
    Amount
    影响因子
    Impact Factor
    发文比例(%)
    Proportion
    中文期刊
    Journal
    发文量
    Amount
    影响因子
    Impact Factor
    发文比例(%)
    Proportion
    Science of the Total Environment 109 7.963 6.8 农业环境科学学报 18 3.026 11.0
    Chemosphere 101 7.086 6.2 环境科学 7 3.936 4.3
    Environmental Pollution 89 8.071 5.5 环境污染与防治 5 1.416 3.0
    Environmental Science and Pollution Research 77 4.223
    4.8 环境化学 5 1.873 3.0
    Ecotoxicology and Environmental Safety 64 6.291 4.0 环境工程 5 1.782 3.0
    下载: 导出CSV

    表  4  关键文献表

    Table  4.   Key literatures

    中心度
    Centrality
    年份
    Year
    第一作者
    Author
    期刊
    Journal
    标题
    Title
    参考文献
    Reference
    0.14 2003 Tipping,E Environmental Pollution The solid–solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales [14]
    0.13 2011 Karami,N Journal of Hazardous Materials Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass [15]
    0.13 2008 Vermeulen,F Environmental Pollution Habitat type-based bioaccumulation and risk assessment of metal and As
    contamination in earthworms, beetles and woodlice
    [16]
    0.13 2009 Van Gestel ,CAM Science of the Total Environment Physico-chemical and biological parameters determine metal bioavailability in soils [17]
    0.12 2005 Lu,AX Geoderma Time effect on the fractionation of heavy metals in soils [18]
    0.10 2006 Ma,YB Environmental Toxicology and Chemistry Short-term natural attenuation of copper in soils: effects of time,temperature, and soil characteristics [19]
    0.03 2014 Bolan,N Journal of Hazardous Materials Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? [3]
    0.03 2014 Ahmad,M Chemosphere Biochar as a sorbent for contaminant management in soil and water:A review [20]
    0.00 2015 Zhao,FJ Environmental science &Technology Soil Contamination in China: Current Status and Mitigation Strategies [21]
    0.01 2017 Lu,KP Journal of Environmental Management Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil [22]
    下载: 导出CSV

    表  5  近5年高被引文献top 10 (基于Wos高被引数据)

    Table  5.   Top 10 highly cited literatures in recent 5 years (based on WoS highly cited data)

    被引频次
    Citation Count
    出版年
    Year
    第一作者
    Author
    期刊
    Journal
    文章标题
    Title
    参考文献
    Reference
    316 2017 Antoniadis, V Earth-science Reviews Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation-A review [24]
    296 2017 Lu, KP Journal of Environmental Management Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil [22]
    205 2020 Palansooriya, KN Environment International Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review [25]
    176 2018 Xue, WJ Journal of Hazardous Materials Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments [26]
    162 2017 Shahid, M Reviews of Environmental Contamination and Toxicology Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System [27]
    161 2017 Ming, LL Environmental Pollution PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events [28]
    147 2018 Kushwaha, A Ecotoxicology and Environmental Safety A critical review on speciation, mobilization and toxicity of lead in soil microbe-plant system and bioremediation strategies [29]
    141 2017 Sharma, B Waste Management Agricultural utilization of biosolids: A review on potential effects on soil and plant grown [30]
    127 2019 Yuan, P Science of the Total Environment Review of biochar for the management of contaminated soil: Preparation, application and prospect [31]
    97 2017 Li, Z Geoderma Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review [7]
    下载: 导出CSV

    表  6  CNKI文献关键词共现聚类表

    Table  6.   Keywords co-occurrence clustering table of CNKI

    聚类名称
    Cluster
    大小
    Size
    轮廓值
    Silhouette
    高频主题词Top team(LLR)
    #0 养分 19 0.966 养分;锌冶炼区;修复效果;土壤改良剂;重金属
    #1 土壤 14 0.915 土壤;蔬菜;赋存形态;重金属;植物
    #2 生物炭 14 1 生物炭;有机质;秸秆还田;有效性;改良剂
    #3 形态 14 0.929 形态;水稻;Cd污染;有机肥;模型
    #4 土壤养分 11 1 土壤养分;有机物料;黑土;油枯;小白菜生长
    #5 沉积物 11 0.877 沉积物;岱海;风险评价;相平衡模型法;达里诺尔
    #6 吸附 11 0.819 吸附;Cu;解吸;Cd形态;Dom
    #7 化学形态 11 0.92 化学形态;Pb;模拟酸雨;茶园;植物毒性
    #8 土壤酶 5 0.929 土壤酶;植物修复;水分;基础呼吸;代谢商
    下载: 导出CSV

    表  7  WoS文献关键词共现聚类

    Table  7.   Co-occurrence clustering of key words in WoS

    聚类名称
    Cluster
    大小
    Size
    轮廓值
    Silhouette
    高频主题词
    Top team (LLR)
    #0 冶炼厂
    19 0.899 冶炼厂;大米;重金属;施肥;植被重建
    #1 土壤
    18 1 土壤;金属;肥料;络合;淋溶
    #2 锌
    17 0.937 锌;铜;土壤呼吸;锌;钙质土
    #3猪粪
    17 0.902 猪粪;堆肥;重金属生物有效性;铜离子 ;植物修复
    #4铅
    17 0.902 铅;pH;提取;金属 ;铅
    #5高通量测序
    16 0.886 高通量测序;形态;微生物群落;镉污染;细菌多样性
    #6形态
    16 0.932 形态;生物炭;脱氢酶活性;酸性挥发硫化物;硒
    #7 沉积物
    15 0.914 沉积物;质量标准;选择性提取;城市化;里约热内卢
    #8 污染物负荷指数
    14 0.949 污染负荷指数;风险评估代码;人为;废水;长期灌溉
    #9 生物炭
    13 0.945 生物炭;矿山土壤;金属;沉积物;土壤
    #10河口
    10 0.985 河口;空间分布;形态转化;胶体;表层沉积物
    下载: 导出CSV
  • [1] 王 坤, 肖羽芯, 李梦莹, 等. 重金属人体生物有效性、吸收及毒性研究中的肠道细胞模型[J]. 生态毒理学报, 2021, 16(4): 57 − 71.
    [2] Adams W, Blust R, Dwyer R, et al. Bioavailability Assessment of Metals in Freshwater Environments: A Historical Review[J]. Environ Toxicol Chem, 2020, 39(1): 48 − 59. doi: 10.1002/etc.4558
    [3] Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141 − 66. doi: 10.1016/j.jhazmat.2013.12.018
    [4] 王亚男, 曾希柏, 白玲玉, 等. 外源砷在土壤中的老化及环境条件的影响[J]. 农业环境科学学报, 2018, 37(7): 1342 − 1349.
    [5] Qu C, Chen W, Hu X, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors[J]. Environment International, 2019, 131: 104995. doi: 10.1016/j.envint.2019.104995
    [6] 罗 梅, 柏宏成, 陈亭悦, 等. 腐殖酸对土壤铅镉吸附、赋存形态及生物可给性的影响[J]. 中国环境科学, 2020, 40(3): 1191 − 1202. doi: 10.3969/j.issn.1000-6923.2020.03.031
    [7] Li Z, Liang D L, Peng Q, et al. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review[J]. Geoderma, 2017, 295: 69 − 79. doi: 10.1016/j.geoderma.2017.02.019
    [8] 熊 雄, 李艳霞, 韩 杰, 等. 堆肥腐殖质的形成和变化及其对重金属有效性的影响[J]. 农业环境科学学报, 2008, 27(6): 2137 − 2142. doi: 10.3321/j.issn:1672-2043.2008.06.003
    [9] 王 俊. 腐殖酸对砷在土壤中的形态转化和生物有效性的影响研究 [D]; 西南大学, 2017.
    [10] 王 娟, 苏德纯. 基于文献计量的小麦玉米重金属污染农田修复治理技术及效果分析[J]. 农业环境科学学报, 2021, 40(3): 493 − 500.
    [11] 杜志鹏, 苏德纯. 稻田重金属污染修复治理技术及效果文献计量分析[J]. 农业环境科学学报, 2018, 37(11): 2409 − 2417. doi: 10.11654/jaes.2018-1128
    [12] 王成尘, 田 稳, 马娇阳, 等. 2000 ~ 2021年农田土壤污染领域研究进展与前沿分析[J]. 中国农业大学学报, 2022, 27(2): 186 − 201.
    [13] 张 宁, 张 盛, 杨海超, 等. 粤港澳大湾区土壤污染问题计量及可视化分析[J]. 环境科学, 2019, 40(12): 5581 − 5592.
    [14] Tipping E, Rieuwerts J, Pan G, et al. The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales[J]. Environmental Pollution, 2003, 125(2): 213 − 225. doi: 10.1016/S0269-7491(03)00058-7
    [15] Karami N, Clemente R, Moreno-Jimenez E, et al. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass[J]. Journal of Hazardous Materials, 2011, 191(1 − 3): 41 − 48. doi: 10.1016/j.jhazmat.2011.04.025
    [16] Van Gestel C A M, Mol S. The influence of soil characteristics on cadmium toxicity for Folsomia candida (Collembola: isotomidae)[J]. Pedobiologia, 2003, 47(4): 387 − 395. doi: 10.1078/0031-4056-00202
    [17] Vermeulen F, Van Den Brink N W, D'have H, et al. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice[J]. Environmental Pollution, 2009, 157(11): 3098 − 3105. doi: 10.1016/j.envpol.2009.05.017
    [18] Lu A X, Zhang S Z, Shan X Q. Time effect on the fractionation of heavy metals in soils[J]. Geoderma, 2005, 125(3-4): 225 − 234. doi: 10.1016/j.geoderma.2004.08.002
    [19] Ma Y B, Lombi E, Nolan A L, et al. Short-term natural attenuation of copper in soils: Effects of time, temperature, and soil characteristics[J]. Environmental Toxicology and Chemistry, 2006, 25(3): 652 − 658. doi: 10.1897/04-601R.1
    [20] Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2014, 99: 19 − 33. doi: 10.1016/j.chemosphere.2013.10.071
    [21] Zhao F J, Ma Y, Zhu Y G, et al. Soil Contamination in China: Current Status and Mitigation Strategies[J]. Environmental Science & Technology, 2015, 49(2): 750 − 759.
    [22] Lu K P, Yang X, Gielen G, et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil[J]. Journal of Environmental Management, 2017, 186: 285 − 292. doi: 10.1016/j.jenvman.2016.05.068
    [23] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace-metals[J]. Analytical Chemistry, 1979, 51(7): 844 − 851. doi: 10.1021/ac50043a017
    [24] Antoniadis V, Levizou E, Shaheen S M, et al. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation-A review[J]. Earth-Science Reviews, 2017, 171: 621 − 645. doi: 10.1016/j.earscirev.2017.06.005
    [25] Palansooriya K N, Shaheen S M, Chen S S, et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review[J]. Environment International, 2020, 134: 105046. doi: 10.1016/j.envint.2019.105046
    [26] Xue W J, Huang D L, Zeng G M, et al. Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments[J]. Journal of Hazardous Materials, 2018, 341: 381 − 389. doi: 10.1016/j.jhazmat.2017.06.028
    [27] Shahid M, Dumat C, Khalid S, et al. Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System [M]//DEVOOGT P. Reviews of Environmental Contamination and Toxicology. New York; Springer. 2017: 73-137.
    [28] Ming L L, Jin L, Li J, et al. PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events[J]. Environmental Pollution, 2017, 223: 200 − 212. doi: 10.1016/j.envpol.2017.01.013
    [29] Kushwaha A, Hans N, Kumar S, et al. A critical review on speciation, mobilization and toxicity of lead in soil microbe-plant system and bioremediation strategies[J]. Ecotoxicology and Environmental Safety, 2018, 147: 1035 − 1045. doi: 10.1016/j.ecoenv.2017.09.049
    [30] Sharma B, Sarkar A, Singh P, et al. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown[J]. Waste Manage, 2017, 64: 117 − 132. doi: 10.1016/j.wasman.2017.03.002
    [31] Yuan P, Wang J Q, Pan Y J, et al. Review of biochar for the management of contaminated soil: Preparation, application and prospect[J]. Science of the Total Environment, 2019, 659: 473 − 490. doi: 10.1016/j.scitotenv.2018.12.400
    [32] 李廷强, 杨肖娥. 土壤中水溶性有机质及其对重金属化学与生物行为的影响[J]. 应用生态学报, 2004, (6): 1083 − 1087. doi: 10.3321/j.issn:1001-9332.2004.06.034
    [33] 余贵芬, 蒋 新, 孙 磊, 等. 有机物质对土壤镉有效性的影响研究综述[J]. 生态学报, 2002, (5): 770 − 776. doi: 10.3321/j.issn:1000-0933.2002.05.021
    [34] Parthasarathy P, Asok M, Ranjan R K, et al. Bioavailability and risk assessment of trace metals in sediments of a high-altitude eutrophic lake, Ooty, Tamil Nadu, India[J]. Environmental Science and Pollution Research, 2021, 28(15): 18616 − 18631. doi: 10.1007/s11356-020-11232-x
    [35] 胡 文. 土壤-植物系统中重金属的生物有效性及其影响因素的研究 [D]; 北京林业大学, 2008.
    [36] Ma X L, Zuo H, Tian M J, et al. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques[J]. Chemosphere, 2016, 144: 264 − 272.
    [37] Chang C Y, Xu X H, Liu C P, et al. Heavy metal accumulation in balsam pear and cowpea related to the geochemical factors of variable-charge soils in the Pearl River Delta, South China[J]. Environment Sci-Process Impacts, 2014, 16(7): 1790 − 1798. doi: 10.1039/C3EM00637A
    [38] Chen W, Habibul N, Liu X Y, et al. FTIR and Synchronous Fluorescence Heterospectral Two-Dimensional Correlation Analyses on the Binding Characteristics of Copper onto Dissolved Organic Matter[J]. Environmental Science & Technology, 2015, 49(4): 2052 − 2058.
    [39] He K, Zhang J, Zeng Y. Knowledge domain and emerging trends of agricultural waste management in the field of social science: A scientometric review[J]. Science of the Total Environment, 2019, 670: 236 − 244. doi: 10.1016/j.scitotenv.2019.03.184
    [40] Muena V, Gonzalez I, Neaman A. Effects of liming and nitrogen fertilization on the development of Oenothera affinis in a soil affected by copper mining[J]. Revista De La Ciencia Del Suelo Y Nutricion Vegetal, 2010, 10(2): 102 − 114.
    [41] Fang W, Wei Y H, Liu J G. Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics[J]. Journal of Hazardous Materials, 2016, 310: 1 − 10. doi: 10.1016/j.jhazmat.2016.02.025
    [42] Zhao B Z, Maeda M, Zhang J B, et al. Accumulation and chemical fractionation of heavy metals in andisols after a different, 6-year fertilization management[J]. Environmental Science and Pollution Research, 2006, 13(2): 90 − 97. doi: 10.1065/espr2005.06.268
    [43] Saviozzi A, Levi-Minzi R, Cardelli R, et al. Biological activity in Cu-contaminated soils: A laboratory experiment[J]. Fresenius Environmental Bulletin, 2006, 15(6): 477 − 483.
    [44] Wang G M, Zhou L X. Application of Green Manure and Pig Manure to Cd-Contaminated Paddy Soil Increases the Risk of Cd Uptake by Rice and Cd Downward Migration into Groundwater: Field Micro-Plot Trials[J]. Water Air and Soil Pollution, 2017, 228(1): 15. doi: 10.1007/s11270-016-3199-y
    [45] Meng J, Liang S J, Tao M M, et al. Chemical speciation and risk assessment of Cu and Zn in biochars derived from co-pyrolysis of pig manure with rice straw[J]. Chemosphere, 2018, 200: 344 − 50. doi: 10.1016/j.chemosphere.2018.02.138
    [46] Wang L X, Liu H T, Prasher S O, et al. Effect of inorganic additives (rock phosphate, PR and boron waste, BW) on the passivation of Cu, Zn during pig manure composting[J]. Journal of Environmental Management, 2021, 285: 7.
    [47] Pelfrene A, Waterlot C, Mazzuca M, et al. Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France)[J]. Environmental Geochemistry and Health, 2011, 33(5): 477 − 493. doi: 10.1007/s10653-010-9365-z
    [48] Coutinho I B, De Souza C D B, Lima E S A, et al. Roles of Soil Organic Matter and Humic Substance Structure in Cu and Pb Adsorption in Histosols[J]. Soil & Sediment Contamination, 2021, 30(2): 148 − 162.
    [49] Wang J W, Liu T, Sun W L, et al. Bioavailable metal(loid)s and physicochemical features co-mediating microbial communities at combined metal(loid) pollution sites[J]. Chemosphere, 2020, 260: 127619. doi: 10.1016/j.chemosphere.2020.127619
    [50] Abuchacra P F F, Aguiar V M C, Abuchacra R C, et al. Assessment of bioavailability and potential toxicity of Cu, Zn and Pb, a case study in Jurujuba Sound, Rio de Janeiro, Brazil[J]. Marine Pollution Bulletin, 2015, 100(1): 414 − 425. doi: 10.1016/j.marpolbul.2015.08.012
    [51] Guan J N, Wang J, Pan H, et al. Heavy metals in Yinma River sediment in a major Phaeozems zone, Northeast China: Distribution, chemical fraction, contamination assessment and source apportionment[J]. Scientific Reports, 2018, 8: 12231. doi: 10.1038/s41598-018-30197-z
    [52] Martins M V A, Silva F, Laut L L M, et al. Response of Benthic Foraminifera to Organic Matter Quantity and Quality and Bioavailable Concentrations of Metals in Aveiro Lagoon (Portugal)[J]. PLoS One, 2015, 10(2): e0118077. doi: 10.1371/journal.pone.0118077
    [53] Awad M, Liu Z Z, Skalicky M, et al. Fractionation of Heavy Metals in Multi-Contaminated Soil Treated with Biochar Using the Sequential Extraction Procedure[J]. Biomolecules, 2021, 11(3): 448. doi: 10.3390/biom11030448
    [54] Negrin V L, Idaszkin Y L, Domini C, et al. Soil metal pollution assessment in Sarcocornia salt marshes in a South American estuary[J]. Marine Pollution Bulletin, 2021, 166: 448.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  3
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-06
  • 录用日期:  2022-04-03
  • 修回日期:  2022-03-23
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回