留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭与沼液混施对杨树人工林土壤温室气体排放的长期影响

陈亚娟 廖晓琳 Saadat UllahMalghani 阮宏华

陈亚娟, 廖晓琳, Saadat Ullah Malghani, 阮宏华. 生物炭与沼液混施对杨树人工林土壤温室气体排放的长期影响[J]. 土壤通报, 2022, 53(4): 828 − 838 doi: 10.19336/j.cnki.trtb.2022012603
引用本文: 陈亚娟, 廖晓琳, Saadat Ullah Malghani, 阮宏华. 生物炭与沼液混施对杨树人工林土壤温室气体排放的长期影响[J]. 土壤通报, 2022, 53(4): 828 − 838 doi: 10.19336/j.cnki.trtb.2022012603
CHEN Ya-juan, LIAO Xiao-lin, MALGHANI Saadat-ullah, RUAN Hong-hua. Long-term Effects of Combined Biochar and Biogas Slurry Application on Soil Greenhouse Gas Emission in a Poplar Plantation System[J]. Chinese Journal of Soil Science, 2022, 53(4): 828 − 838 doi: 10.19336/j.cnki.trtb.2022012603
Citation: CHEN Ya-juan, LIAO Xiao-lin, MALGHANI Saadat-ullah, RUAN Hong-hua. Long-term Effects of Combined Biochar and Biogas Slurry Application on Soil Greenhouse Gas Emission in a Poplar Plantation System[J]. Chinese Journal of Soil Science, 2022, 53(4): 828 − 838 doi: 10.19336/j.cnki.trtb.2022012603

生物炭与沼液混施对杨树人工林土壤温室气体排放的长期影响

doi: 10.19336/j.cnki.trtb.2022012603
基金项目: 国家自然科学基金青年基金(42007090)和国家自然科学基金外国青年学者基金(32050410301)资助
详细信息
    作者简介:

    陈亚娟(1997−),女,江苏泰州人,硕士研究生,主要从事森林生态系统氮循环方面的研究。E-mail: cyj0123cn@163.com

    通讯作者:

    E-mail: liaoxiaolin@njfu.edu.cn

  • 中图分类号: S753.53 + 2

Long-term Effects of Combined Biochar and Biogas Slurry Application on Soil Greenhouse Gas Emission in a Poplar Plantation System

  • 摘要:   目的  明确不同生物炭和沼液添加量对杨树人工林土壤温室气体排放的影响。  方法  依托长期生物炭和沼液混施野外观测样地,于2019年7月到2020年1月测定不同生物炭(B0, B1, B2)和沼液(C, L, M, H)添加处理的土壤温室气体排放通量,于2019年9月和2020年1月测定土壤理化性质。通过统计分析,揭示生物炭和沼液对土壤温室气体排放的影响。  结果  添加生物炭的土壤总碳(B1: 2.42 ± 0.14%, B2: 2.75 ± 0.14%)显著高于未添加生物炭的土壤(B0: 1.83 ± 0.04%)。同样,添加生物炭的土壤总氮(B1: 0.22 ± 0.01%, B2: 0.24 ± 0.01%)显著高于未添加生物炭的土壤(B0: 0.18 ± 0.01%)。沼液添加显著提高土壤总氮含量,但生物炭与沼液对土壤总碳和总氮不存在显著交互作用。在冬季,沼液和生物炭均显著影响土壤NH4+-N含量,且两者存在显著性的交互作用;沼液显著增加土壤NO3-N含量。在野外监测时间内,沼液显著提高了土壤N2O和CH4的累积排放量,增强了总增温潜势。与未添加沼液(C)处理相比,低(L)、中(M)和高剂量(H)沼液添加处理的总增温潜势分别增加了30%、40%和44%;而生物炭对土壤温室气体累积排放量和总增温潜势的影响不显著。  结论  生物炭单次添加7年后对温室气体排放的抑制效应不明显,甚至可能增加土壤温室气体的排放。沼液每年3次添加显著促进土壤温室气体的排放。因此,建议进一步研究老化效应对生物炭抑制土壤温室气体排放能力的潜在机制以及生物炭与沼液(氮肥)配施的最佳比例,以改善土壤环境并减少温室气体排放。
  • 图  1  样地设置。C,L,M,H表示从低到高的四种沼液施用率(0,125,250,375 m3 hm−2 yr−1),B0,B1,B2表示从低到高的三种生物炭施用率(0,80,120 t hm−2

    Figure  1.  The layout of experiment plot. C, L, M, H represent the four biogas slurry rates from low to high (0, 125, 250, and 375 m3 hm−2 yr−1, respectively). B0, B1, B2 represent three biochar application rates from low to high (0, 80, 120 t hm−2, respectively)

    图  2  不同沼液(C,L,M,H)和生物炭(B0,B1,B2)处理下的土壤理化性质及双因素方差分析。* P < 0.05;** P < 0.01;*** P < 0.001

    Figure  2.  Soil physicochemical properties in different slurry (C, L, M, H) and biochar (B0, B1, B2) treatment and the two-way analysis of variance (Two-way ANOVA) of the effects of biochar, slurry, and their interaction on the three parameters. * P < 0.05; ** P < 0.01; *** P < 0.001

    图  3  不同沼液(C,L,M,H)和生物炭(B0,B1,B2)处理下的土壤硝化和反硝化潜力

    Figure  3.  Soil nitrification and denitrification potential in different slurry (C, L, M, H) and biochar (B0, B1, B2) treatments

    图  4  不同沼液(C,L,M,H)和生物炭(B0,B1,B2)处理下土壤温室气体排放通量随时间的变化(7/2019 ~ 1/2020)

    Figure  4.  Soil greenhouse gas flux during experimental period (July 2019 to January 2020) under different slurry (C, L, M, H) and biochar (B0, B1, B2) application

    图  5  不同沼液(C,L,M,H)和生物炭(B0,B1,B2)处理下土壤温室气体在野外监测期内(7/2019 ~ 1/2020)的累积排放量及总增温潜势

    Figure  5.  The cumulative greenhouse gas emissions and total global warming potential recorded during experimental period of present study (July 2019 to January 2020) under different slurry (C, L, M, H) and biochar (B0, B1, B2) application

    表  1  土壤温室气体排放通量及累积排放量的双因素方差分析

    Table  1.   Two-way ANOVA of soil greenhouse gas flux and cumulative emissions

    温室气体
    Greenhouse gas
    处理
    Factors
    7/16/20198/16/20199/19/201910/17/201911/18/201912/19/20191/13/2020累积排放量
    Cumulative emissions
    N2O 沼液 0.015 0.107 0.005 0.000 0.013 0.002 0.127 0.002
    生物炭 0.529 0.684 0.229 0.212 0.726 0.427 0.012 0.131
    沼液 × 生物炭 0.315 0.457 0.694 0.246 0.593 0.113 0.026 0.676
    CO2 沼液 0.582 0.858 0.135 0.260 0.001 0.007 0.077 0.273
    生物炭 0.531 0.666 0.934 0.695 0.934 0.634 0.339 0.945
    沼液 × 生物炭 0.571 0.959 0.903 0.308 0.569 0.694 0.271 0.667
    CH4 沼液 0.017 0.056 0.059 0.111 0.012 0.000 0.014 0.003
    生物炭 0.266 0.793 0.688 0.861 0.855 0.962 0.565 0.615
    沼液 × 生物炭 0.156 0.981 0.394 0.391 0.313 0.614 0.675 0.752
      注:粗体数字表示显著影响(P < 0.05)
    下载: 导出CSV

    表  2  土壤温室气体排放量与土壤理化性质、硝化、反硝化潜力之间的相关性

    Table  2.   Correlation between greenhouse gases flux and soil physicochemical properties, nitrification, denitrification potential

    9/19/2019含水量
    Soil moisture content
    铵态氮
    NH4+−N
    硝态氮
    NO3−N
    可溶性有机碳
    DOC
    微生物量碳
    MBC
    微生物量氮
    MBN
    硝化潜力
    PNR
    反硝化潜力
    DEA
    N2O flux 0.37 −0.083 0.619* 0.217 0.633* 0.268 0.681* 0.890***
    CO2 flux −0.084 0.118 0.733** −0.139 0.462 0.56 0.319 0.443
    CH4 flux −0.181 0.159 0.701* 0.025 0.45 0.528 0.628* 0.622*
    1/13/2020 含水量
    Soil moisture content
    铵态氮
    NH4+−N
    硝态氮
    NO3−N
    可溶性有机碳
    DOC
    微生物量碳
    MBC
    微生物量氮
    MBN
    硝化潜力
    PNR
    反硝化潜力
    DEA
    N2O flux −0.383 −0.31 0.078 0.128 −0.221 0.127 0.087 0.077
    CO2 flux 0.415 −0.106 0.381 0.232 0.169 0.06 0.596* 0.386
    CH4 flux −0.331 0.137 0.707* 0.221 0.028 0.329 0.629* 0.369
      注:粗体数字表示显著影响。*P < 0.05, **P < 0.01, ***P < 0.001
    下载: 导出CSV
  • [1] 国家林业局. 全国森林资源统计: 第八次全国森林资源清查[M]. 北京: 中国林业出版社, 2013.
    [2] 方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报, 2008, (10): 2308 − 2316.
    [3] 刘世荣, 杨予静, 王 晖. 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J]. 生态学报, 2018, (1): 1 − 10.
    [4] 王会来, 刘 娟, 姜培坤, 等. 营林措施对森林土壤N2O排放影响的研究进展[J]. 土壤学报, 2018, (1): 18 − 30. doi: 10.11766/trxb201703160104
    [5] Greenberg I, Kaiser M, Gunina A, et al. Substitution of mineral fertilizers with biogas digestate plus biochar increases physically stabilized soil carbon but not crop biomass in a field trial[J]. Science of the Total Environment, 2019, 680: 181 − 189. doi: 10.1016/j.scitotenv.2019.05.051
    [6] 尹高飞, 王小非, 沈仕洲, 等. 沼液替代化肥对小麦-玉米轮作温室气体排放及温室效应的影响[J]. 农业环境科学学报, 2019, (6): 1408 − 1419. doi: 10.11654/jaes.2018-0657
    [7] Verdia L, Kuikman P J, Orlandini S, et al. Does the use of digestate to replace mineral fertilizers have less emissions of N2O and NH3?[J]. Agricultural and Forest Meteorology, 2019, 269-270: 112 − 118. doi: 10.1016/j.agrformet.2019.02.004
    [8] Zheng H, Wang L, Peng W, et al. Realizing the values of natural capital for inclusive, sustainable development: Informing China’s new ecological development strategy[J]. Proceedings of the National Academy of Sciences, 2019, 116(17): 8623 − 8628. doi: 10.1073/pnas.1819501116
    [9] Lehmann J. Bio-energy in the black[J]. Frontier in Ecology and Environment, 2007, 5(7): 381 − 387. doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
    [10] Wang C, Tu Q, Dong D, et al. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting[J]. Journal of Hazard Materials, 2014, 280: 409 − 416. doi: 10.1016/j.jhazmat.2014.08.030
    [11] Deng W G, Zwieten V L, Lin Z M, et al. Sugarcane bagasse biochars impact respiration and greenhouse gas emissions from a latosol[J]. Journal of Soils Sediments, 2017, 17: 632 − 640. doi: 10.1007/s11368-015-1347-4
    [12] Cayuela M L, Van Z L, Singh B P, et al. Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis[J]. Agriculture, Ecosystems & Environment, 2014, 191: 5 − 16.
    [13] Lu X H, Li Y F, Wang H L, et al. Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation[J]. Agricultural and Forest Meteorology, 2019, 271: 168 − 179. doi: 10.1016/j.agrformet.2019.03.001
    [14] Dong X, Li G, Lin Q, et al. Quantity and quality changes of biochar aged for 5 years in soil under field conditions[J]. Catena, 2017, 159: 136 − 143. doi: 10.1016/j.catena.2017.08.008
    [15] 林庆毅, 姜存仓, 张梦阳. 生物炭老化后理化性质及微观结构的表征[J]. 环境化学, 2017, (10): 2107 − 2114. doi: 10.7524/j.issn.0254-6108.2017021703
    [16] Li B, Bi Z, Xiong Z. Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China[J]. Global Change Biology Bioenergy, 2017, 9(2): 400 − 413. doi: 10.1111/gcbb.12356
    [17] Duan P, Zhang X, Zhang Q, et al. Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification[J]. Science of the Total Environment, 2018, 642: 1303 − 1310. doi: 10.1016/j.scitotenv.2018.06.166
    [18] Wang L, Gao C C, Yang K, et al. Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions[J]. Science of the Total Environment, 2021, 782: 146824. doi: 10.1016/j.scitotenv.2021.146824
    [19] Feng Y Y, Feng Y F, Liu Q, et al. How does biochar aging affect NH3 volatilization and GHGs emissions from agricultural soils?[J]. Environmental Pollution, 2022, 294: 118598. doi: 10.1016/j.envpol.2021.118598
    [20] Xu C Y, Hosseini-Bai S, Hao Y B, et al. Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils[J]. Environmental Science and Pollution Research, 2015, 22: 6112 − 6125. doi: 10.1007/s11356-014-3820-9
    [21] Brassard P, Godbout S, Palacios J H, et al. Effect of six engineered biochars on GHG emissions from two agricultural soils: A short-term incubation study[J]. Geoderma, 2018, 327: 73 − 84. doi: 10.1016/j.geoderma.2018.04.022
    [22] Scheer C, Grace P R, Rowlings D W, et al. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia[J]. Plant Soil, 2011, 345: 47 − 58. doi: 10.1007/s11104-011-0759-1
    [23] Schimmelpfennig S, Müller C, Grünhage L, et al. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland-Effects on greenhouse gas emissions and plant growth[J]. Agriculture, Ecosystems and Environment, 2014, 191: 39 − 52. doi: 10.1016/j.agee.2014.03.027
    [24] Ge Z W, Fang S Y, Chen H, et al. Soil Aggregation and Organic Carbon Dynamics in Poplar Plantations[J]. Forests, 2018, 9(9): 508. doi: 10.3390/f9090508
    [25] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
    [26] Tang Y, Yu G, Zhang X, et al. Environmental variables better explain changes in potential nitrification and denitrification activities than microbial properties in fertilized forest soils[J]. Science of the Total Environment, 2019, 647: 653 − 662. doi: 10.1016/j.scitotenv.2018.07.437
    [27] IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014.
    [28] 江明华, 程建中, 李心清, 等. 生物炭对农田土壤CO2排放的影响研究进展[J]. 地球与环境, 2021, 49(6): 726 − 736.
    [29] Gunina A, Kuzyakov Y. Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance[J]. Soil Biology and Biochemistry, 2014, 71: 95 − 104. doi: 10.1016/j.soilbio.2014.01.011
    [30] 孙 贇, 林 杉, Muhammad Shaaban, 等. 鄂南棕红壤区不同植茶年限茶园CH4通量特征[J]. 环境科学学报, 2017, 37(10): 3995 − 4003.
    [31] 张 睿. 天然林转换为人工林后土壤温室气体排放的动态变化[D]. 浙江: 浙江农林大学, 2016.
    [32] 刘 娟, 陈雪双, 吴家森, 等. 剔除杂草对山核桃林地土壤温室气体排放的影响[J]. 应用生态学报, 2015, (3): 666 − 674.
    [33] 罗献宝, 周常茂, 李 清, 等. 沼液施用及葡萄糖添加对赤红壤温室气体排放的影响[J]. 南方农业学报, 2018, 49(7): 1311 − 1317. doi: 10.3969/j.issn.2095-1191.2018.07.08
    [34] 张 凯, 郑 华, 欧阳志云, 等. 施氮对桉树人工林生长季和非生长季土壤温室气体通量的影响[J]. 生态学杂志, 2015, (7): 1779 − 1784.
    [35] 李睿达, 张 凯, 苏 丹, 等. 施氮对桉树人工林生长季土壤温室气体通量的影响[J]. 生态学报, 2015, (18): 5931 − 5939.
    [36] 张蛟蛟, 李永夫, 姜培坤, 等. 施肥对板栗林土壤活性碳库和温室气体排放的影响[J]. 植物营养与肥料学报, 2013, (3): 745 − 752. doi: 10.11674/zwyf.2013.0326
    [37] 徐 敏, 伍 钧, 张小洪, 等. 生物炭施用的固碳减排潜力及农田效应[J]. 生态学报, 2018, (2): 393 − 404.
    [38] Liu Q, Zhang Y, Liu B, et al. How does biochar influence soil N cycle? A meta-analysis[J]. Plant Soil, 2018, 426: 211 − 22. doi: 10.1007/s11104-018-3619-4
    [39] Borchard N, Schirrmann M, Cayuela M L, et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis[J]. Science of the Total Environment, 2019, 651: 2354 − 2364. doi: 10.1016/j.scitotenv.2018.10.060
    [40] He Y H, Yao Y X, Jia Z, et al. Antagonistic interaction between biochar and nitrogen addition on soil greenhouse gas fluxes: A global synthesis[J]. Global Change Biology Bioenergy, 2021, 00: 1 − 13.
    [41] Song X Z, Pan G X, Zhang C, et al. Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta‐analysis[J]. Ecosystem Health and Sustainability, 2016, 2(2).
    [42] He Y H, Zhou X H, Jiang L L, et al. Effects of biochar application on soil greenhouse gas fluxes: a meta‐analysis[J]. Global Change Biology Bioenergy, 2017, 9(4): 743 − 755. doi: 10.1111/gcbb.12376
    [43] Hawthorne I, Johnson M S, Jassal R S, et al. Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil[J]. Journal of Environmental Management, 2016, 192: 203 − 214.
    [44] Tan G, Wang H, Xu N, et al. Biochar amendment with fertilizers increases peanut N uptake, alleviates soil N2O emissions without affecting NH3 volatilization in field experiments[J]. Environmental Science and Pollution Research, 2018, 25(9): 8817 − 8826. doi: 10.1007/s11356-017-1116-6
    [45] Sun L Y, Deng J Y, Fan C H, et al. Combined effects of nitrogen fertilizer and biochar on greenhouse gas emissions and net ecosystem economic budget from a coastal saline rice field in southeastern China[J]. Environmental science and pollution research international, 2020, 27(14): 17013 − 17022. doi: 10.1007/s11356-020-08204-6
    [46] Feng Z, Zhu L. Impact of biochar on soil N2O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil[J]. Science of the Total Environment, 2017, 584-585: 776 − 782. doi: 10.1016/j.scitotenv.2017.01.115
    [47] Liu Y, Bi Y, Xie Y, et al. Successive straw biochar amendments reduce nitrous oxide emissions but do not improve the net ecosystem economic benefit in an alkaline sandy loam under a wheat‐maize cropping system[J]. Land Degradation and Development, 2020, 31: 868 − 883. doi: 10.1002/ldr.3495
    [48] Spokas K A. Impact of biochar field aging on laboratory greenhouse gas production potentials[J]. Global Change Biology Bioenergy, 2013, 5: 165 − 176. doi: 10.1111/gcbb.12005
    [49] Lentz R D, Ippolito J A, Spokas K A. Biochar and Manure Effects on Net Nitrogen Mineralization and Greenhouse Gas Emissions from Calcareous Soil under Corn[J]. Soil Science Society of America Journal, 2014, 78(5): 1641 − 1655. doi: 10.2136/sssaj2014.05.0198
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  8
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 录用日期:  2022-03-27
  • 修回日期:  2022-03-16
  • 刊出日期:  2022-06-17

目录

    /

    返回文章
    返回