Fractal Features of Particle-Size Distribution of Soil Profiles in Luofu Mountain, Guangdong
-
摘要:
目的 揭示广东罗浮山不同海拔高度土壤颗粒组成分形维数特征的分布规律。 方法 在广东罗浮山不同海拔高度的10个土壤采样点挖掘剖面,采集各发生层土壤,测定了土壤颗粒组成、有机碳(SOC)、全铁(Fet)、游离铁(Fed)、无定形铁(Feo)、阳离子交换量(CEC)等理化性质,分析了土壤颗粒分形维数与海拔、土壤颗粒分布及化学性质之间的相关关系。 结果 随着土层深度的增加,土壤颗粒分形维数先增加后减小;随着海拔的升高,土壤黏粒含量、颗粒分形维数均呈减小趋势,且与海拔高度均呈极显著相关关系;随土壤质地的变细,分形维数平均值由2.7601上升到了2.8954,即分形维数随土壤质地的变细而增大;颗粒分形维数与砂粒呈极显著负相关关系,与黏粒呈极显著正相关关系;分形维数与SOC、Feo、Feo/Fed、CEC呈极显著或显著负相关关系,与Fet、Fed含量表现为极显著正相关关系;通径分析表明Fet、Feo/Fed是化学性质中影响颗粒分形维数的主要因素。 结论 土壤颗粒分形维数可以作为土壤质地的重要诊断指标,也可作为不同海拔高度土壤风化成土进程的参考表征指标。 Abstract:Objective The fractal dimension characteristics of particle-size distribution of soil profiles along an altitude gradient were revealed in Luofu Mountain, Guangdong. Method Ten soil sampling points at different altitude gradients in Luofu Mountain were selected and soil samples were collected from profile horizons. Soil physic-chemical properties, such as soil particle-size composition, soil organic carbon (SOC), Fet, Fed, Feo, CEC, etc, were determined to analyze the correlation of soil particle fractal dimension with altitude gradients, soil particle distribution (PSD) and chemical properties. Result With the increase of soil depth, soil particle fractal dimension in the Luofu Mountain increased firstly and then decreased with the increase of altitude. The clay content and fractal dimension both decreased, and had extra-significant correlation with altitude. The average of fractal dimension increased from 2.7601 to 2.8954 with soil texture, that is, the fractal dimension increased with the soil texture. The fractal dimension was extra-significantly and negatively related to the sand, whereas, there was extra-significantly positive correlation between fractal dimension and clay. The fractal dimension had extra-significantly or significantly negative correlation with SOC, Feo, Feo/Fed, CEC, but was extra-significantly positively correlated with Fet, Fed. Path analysis showed that Fet, Feo/Fed had the main influence of chemical properties on soil particle fractal dimension. Conclusion Soil particle fractal dimension could be used to indicate the degree of soil weathering development at different altitudes and be applied as an important diagnostic indicator for soil texture. -
Key words:
- Fractal dimension /
- Particle-size distribution /
- Soil profile /
- Altitude /
- The Luofu Mountain
-
表 1 采样点的基本情况
Table 1. Basic information of soil sampling sites
剖面号
Profile No.海拔
Altitude (m)坡度
Slope (°)土壤类型
Soil typeLF01 1210 < 5 腐殖铝质常湿雏形土 LF02 1140 5 ~ 10 普通富铝常湿富铁土 LF03 1001 25 ~ 35 普通富铝常湿富铁土 LF04 900 5 ~ 10 普通富铝常湿富铁土 LF05 800 10 ~ 15 普通富铝常湿富铁土 LF06 700 5 ~ 10 普通强育湿润富铁土 LF07 600 25 ~ 35 黏化强育湿润富铁土 LF08 500 10 ~ 15 普通富铝湿润富铁土 LF09 370 5 ~ 10 普通富铝湿润富铁土 LF10 280 5 ~ 10 普通强育湿润富铁土 表 2 不同土壤质地类型的颗粒分形维数统计特征
Table 2. Statistical character about soil fractal dimension under different textures
质地类型
Soil texture样品数
Sample number分形维数
Fractal dimension变幅
Range平均值 ± 标准差
Mean ± Std. Deviation砂质壤土 3 2.7173 ~ 2.7954 2.7601 ± 0.0396 壤土 2 2.7650 ~ 2.7803 2.7727 ± 0.0108 砂质黏壤土 29 2.7918 ~ 2.8612 2.8231 ± 0.0182 黏壤土 6 2.8552 ~ 2.8802 2.8704 ± 0.0113 砂质黏土 1 2.8587 2.8587 黏土 1 2.8954 2.8954 表 3 土壤颗粒分形维数与土壤化学性质的相关关系(n = 42)
Table 3. Correlations of soil fractal dimensions with soil chemical properties
项目
ItemSOC Fet Fed Feo Fed/Fet Feo/Fed CEC 分形维数 −0.389* 0.737** 0.657** −0.655** 0.000 −0.708** −0.384* 注:* 在 0.05 水平(双侧)上显著相关;** 在0.01 水平(双侧)上显著相关。 表 4 土壤颗粒分形维数与土壤化学性质的通径分析(n = 42)
Table 4. Path analysis of soil fractal dimensions with soil chemical properties
项目
Item与分形维数的简单相关系数
The simple coefficient with fractal dimension直接通径系数
Direct path coefficient间接通径系数
Indirect path coefficientFet Feo/Fed Fet 0.737** 0.532 − 0.205 Feo/Fed −0.708** −0.483 −0.225 − -
[1] 文星跃, 黄成敏, 黄凤琴, 等. 岷江上游河谷土壤粒径分形维数及其影响因素[J]. 华南师范大学学报(自然科学版), 2011, 43(1): 80 − 86. [2] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896 − 1899. doi: 10.3321/j.issn:0023-074X.1993.20.010 [3] 华 瑞, 徐学选, 张少妮, 等. 不同退耕年限林草地土壤颗粒分形特征研究[J]. 水土保持学报, 2016, 30(4): 206 − 209. [4] 伏耀龙, 张兴昌, 王金贵. 岷江上游干旱河谷土壤粒径分布分形维数特征[J]. 农业工程学报, 2012, 28(5): 120 − 125. doi: 10.3969/j.issn.1002-6819.2012.05.020 [5] Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science, 1967, 156(3775): 636 − 638. doi: 10.1126/science.156.3775.636 [6] Tyler S W, Wheatcraft S W. Fractal Scaling of soil particle-size distributions: Analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362 − 369. doi: 10.2136/sssaj1992.03615995005600020005x [7] 吕圣桥, 高 鹏, 耿广坡, 等. 黄河三角洲滩地土壤颗粒分形特征及其与土壤有机质的关系[J]. 水土保持学报, 2011, 25(6): 134 − 138. [8] 姜 坤, 秦海龙, 卢 瑛, 等. 广东省不同母质发育土壤颗粒分布的分形维数特征[J]. 水土保持学报, 2016, 30(6): 319 − 324. [9] Kravchenko A, Zhang R. Estimating the soil water retention from particle-size distributions: A fractal approach[J]. Soil Science, 1998, 163(3): 171 − 179. doi: 10.1097/00010694-199803000-00001 [10] Gao G L, Ding G D, Zhao Y Y, et al. Characterization of soil particle size distribution with a fractal model in the desertified regions of northern China[J]. Acta Geophysica, 2016, 64(1): 1 − 14. doi: 10.1515/acgeo-2015-0050 [11] 缪驰远, 汪亚峰, 魏 欣, 等. 黑土表层土壤颗粒的分形特征[J]. 应用生态学报, 2007, 18(9): 1987 − 1993. [12] 魏茂宏, 林慧龙. 江河源区高寒草甸退化序列土壤粒径分布及其分形维数[J]. 应用生态学报, 2014, 25(3): 679 − 686. [13] Sun C, Liu G, Sha X. Natural succession of grassland on the Loess Plateau of China affects multifractal characteristics of soil particle-size distribution and soil nutrients[J]. Ecological Research, 2016, 31(6): 1 − 12. [14] Xia D, Deng Y, Wang S, et al. Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China[J]. Natural Hazards, 2015, 79(1): 455 − 478. doi: 10.1007/s11069-015-1852-1 [15] 徐加盼, 李继洪, 魏玉杰, 等. 不同母质类型发育土壤颗粒组成分形特征[J]. 土壤学报, 2020, 57(5): 1197 − 1205. [16] 巨 莉, 文安邦, 郭 进, 等. 三峡库区不同土地利用类型土壤颗粒分形特征[J]. 水土保持学报, 2011, 25(5): 234 − 237. [17] 宋孝玉, 李亚娟, 李怀有, 等. 不同地貌类型及土地利用方式下土壤粒径的分形特征[J]. 西北农林科技大学学报(自然科学版), 2009, 37(9): 155 − 160,167. [18] 代豫杰, 李锦荣, 郭建英, 等. 乌兰布和沙漠不同灌丛土壤颗粒多重分形特征及其与有机碳分布的关系[J]. 环境科学研究, 2017, 30(7): 1069 − 1078. [19] Liu X, Zhang G, Heathman G C, et al. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China[J]. Geoderma, 2009, 154(1): 123 − 130. [20] Liu X, Li Z, Li P. Particle fractal dimension and total phosphorus of soil in a typical watershed of Yangtze River, China[J]. Environmental Earth Sciences, 2015, 73(10): 6091 − 6099. doi: 10.1007/s12665-014-3833-1 [21] 石玉林. 我国山地的主要特点及其合理利用[J]. 资源科学, 1985, 7(4): 1 − 7. [22] 党亚爱, 李世清, 王国栋, 等. 黄土高原典型土壤剖面土壤颗粒组成分形特征[J]. 农业工程学报, 2009, 25(9): 74 − 78. doi: 10.3969/j.issn.1002-6819.2009.09.013 [23] 刘立诚, 彭崇玮. 广东罗浮山土壤形成特征[J]. 土壤通报, 1985, 16(2): 58 − 61. [24] 董玉清, 贾重建, 卢 瑛, 等. 罗浮山土壤发生特性与系统分类研究[J]. 土壤通报, 2021, 52(5): 1009 − 1019. [25] 秦海龙, 贾重建, 卢 瑛, 等. 广东罗浮山土壤有机碳储量与组分垂直分布特征[J]. 西南林业大学学报(自然科学), 2018, 38(3): 108 − 115. [26] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012. [27] 陈 冲, 贾重建, 卢 瑛, 等. 珠江三角洲平原土壤磷剖面分布及形态特征研究[J]. 土壤通报, 2015, 46(5): 1025 − 1033. [28] 顾也萍, 黄宣正, 胡罗生, 等. 黄山土壤的特性及分类[J]. 土壤, 1991, 23(5): 246 − 252. [29] 冯跃华, 张杨珠, 邹应斌, 等. 井冈山土壤发生特性与系统分类研究[J]. 土壤学报, 2005, 42(5): 720 − 729. doi: 10.3321/j.issn:0564-3929.2005.05.003 [30] 李德成, 张桃林. 中国土壤颗粒组成的分形特征研究[J]. 土壤与环境, 2000, 9(4): 263 − 265. [31] 雷 梅, 常庆瑞, 冯立孝, 等. 太白山土壤特性及氧化铁发生学特征[J]. 地理研究, 2001, 20(1): 83 − 90. doi: 10.3321/j.issn:1000-0585.2001.01.012 [32] 贾重建, 卢 瑛, 熊 凡, 等. 珠江三角洲平原不同种植年限土壤铁氧化物特征研究[J]. 土壤学报, 2017, 54(4): 894 − 904. [33] 熊 毅. 土壤胶体(第一册)[M]. 北京: 科学出版社, 1983: 155-163. -