留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辽宁省耕地利用可持续集约化水平及其影响因素

刘源 吕晓 彭文龙

刘 源, 吕 晓, 彭文龙. 辽宁省耕地利用可持续集约化水平及其影响因素[J]. 土壤通报, 2022, 53(5): 1009 − 1018 doi: 10.19336/j.cnki.trtb.2022031103
引用本文: 刘 源, 吕 晓, 彭文龙. 辽宁省耕地利用可持续集约化水平及其影响因素[J]. 土壤通报, 2022, 53(5): 1009 − 1018 doi: 10.19336/j.cnki.trtb.2022031103
LIU Yuan, LÜ Xiao, PENG Wen-long. Sustainable Intensive Level of Cultivated Land Use and Influential Factors in Liaoning Province[J]. Chinese Journal of Soil Science, 2022, 53(5): 1009 − 1018 doi: 10.19336/j.cnki.trtb.2022031103
Citation: LIU Yuan, LÜ Xiao, PENG Wen-long. Sustainable Intensive Level of Cultivated Land Use and Influential Factors in Liaoning Province[J]. Chinese Journal of Soil Science, 2022, 53(5): 1009 − 1018 doi: 10.19336/j.cnki.trtb.2022031103

辽宁省耕地利用可持续集约化水平及其影响因素

doi: 10.19336/j.cnki.trtb.2022031103
基金项目: 国家自然科学基金面上项目(42071226)、辽宁省“兴辽英才计划”青年拔尖人才项目(XLYC1807060)、辽宁省经济社会发展研究课题(2022lslybkt-026)和中央高校基本科研业务费项目(N2114006)资助
详细信息
    作者简介:

    刘源:刘 源(1999−),女,汉族,河南伊川人,硕士研究生,主要研究土地经济与政策。E-mail: 2100042@stu.neu.edu.cn

    通讯作者:

    E-mail: lvxiao@mail.neu.edu.cn

  • 中图分类号: F321.1

Sustainable Intensive Level of Cultivated Land Use and Influential Factors in Liaoning Province

  • 摘要:   目的  耕地利用可持续集约化是缓解粮食安全问题、减轻环境压力的可行模式,为明晰粮食主产区辽宁省耕地利用的可持续集约化现状和潜力,开展水平测度及影响因素的探究。  方法  创新性地采用超效率SBM模型测度2000 ~ 2019年辽宁省耕地利用可持续集约度,并运用Tobit模型探究影响因子。  结果  ① 2000 ~ 2019年,耕地利用的可持续集约度波动特征明显,整体略有增加,耕地单产和灌溉废水量对可持续集约度的影响较大。② 规模效率相较于纯技术效率对可持续集约度的影响更显著,规模效益也一直处于递增状态,增加人力、物力等要素投入会在较长时间内对可持续集约度有显著地提升作用。③ 农村劳动力高中及以上文化水平、种植结构以及农业收入占农村常住居民人均可支配收入比例对耕地利用的可持续集约度有显著正向影响,耕地受灾率有显著负向影响。  结论  科学提升耕地单位产量、有效管控灌溉用水量对于辽宁省耕地利用可持续集约化水平的提升有明显作用,增加化肥、农药、地膜等物质投入的有效利用率、建立农业应急防护体系是助推可持续集约化的有效途径。
  • 图  1  耕地利用可持续集约化理论分析框架图

    Figure  1.  Theoretical analysis framework of sustainable intensification of cultivated land use

    图  2  耕地利用可持续集约度与期望产出变化特征

    Figure  2.  Characteristics of the degree of sustainable intensification of cultivated land use and expected output

    图  3  耕地利用可持续集约度与非期望产出变化特征

    Figure  3.  Characteristics of the degree of sustainable intensification of cultivated land use and unexpected output

    表  1  耕地利用可持续集约度评估指标

    Table  1.   Evaluation index of the degree of sustainable intensification of cultivated land use

    指标类型
    Index type
    指标
    Index
    释义及单位
    Interpretation and unit
    物质投入 土地投入 耕地面积(hm2
    能源投入 农业机械总动力(kw)
    劳动力投入 农业从业人员(万人)
    水资源投入 耕地有效灌溉面积(hm2
    化肥投入 化肥施用量(104 t)
    农药投入 农药使用量(104 t)
    薄膜投入 塑料薄膜使用量(t)
    柴油投入 农用柴油使用量(104 t)
    期望产出 农业产值 农业产值(亿元)
    耕地单产 耕地作物单位面积产量(t hm−2
    非期望产出 气体废物 碳排放量(t)
    固体废物 农业污染物排放量(t)
    废水 灌溉废水量(t)
    下载: 导出CSV

    表  2  各产出要素的碳排放系数

    Table  2.   Carbon emission coefficient of each output factor

    要素
    Factor
    碳排放系数
    Carbon emission coefficient
    单位
    Unit
    煤炭 0.539 kg kg−1
    焦炭 0.830 kg kg−1
    原油 0.836 kg kg−1
    汽油 0.814 kg kg−1
    煤油 0.844 kg kg−1
    柴油 0.862 kg kg−1
    燃料油 0.828 kg kg−1
    天然气 0.596 kg (m3)−1
    电力 0.097 kg kwh−1
    化肥 0.896 kg kg−1
    农药 4.934 kg kg−1
    农膜 5.180 kg kg−1
    下载: 导出CSV

    表  3  耕地可持续集约度分解情况

    Table  3.   Decomposition of the degree of sustainable intensification of cultivated land use

    年份
    Year
    综合效率
    Technical
    efficiency score
    纯技术效率
    Pure technical
    efficiency score
    规模效率
    Scale
    effect score
    规模收益
    Returns
    to scale
    2000 0.576 1.092 0.528 增加
    2001 1.005 1.024 0.981 增加
    2002 1.000 1.025 0.976 增加
    2003 0.839 1.029 0.815 增加
    2004 1.021 1.032 0.989 增加
    2005 1.002 1.003 0.999 增加
    2006 1.001 1.005 0.996 增加
    2007 1.014 1.018 0.996 增加
    2008 0.718 1.006 0.714 增加
    2009 0.591 0.789 0.749 增加
    2010 0.727 0.835 0.870 增加
    2011 0.746 0.862 0.866 增加
    2012 1.004 1.012 0.993 增加
    2013 1.011 1.011 1.000 增加
    2014 0.671 1.001 0.671 增加
    2015 1.018 1.034 0.984 增加
    2016 1.008 1.022 0.986 增加
    2017 0.919 1.000 0.919 增加
    2018 0.863 1.006 0.858 增加
    2019 1.059 1.068 0.992 增加
    下载: 导出CSV

    表  4  耕地利用可持续集约度影响因素Tobit回归结果

    Table  4.   Tobit regression results of influencing factors of the degree of sustainable intensification of cultivated land use

    影响因素
    Indicator
    相关系数
    Correlation coefficient
    标准误
    Standard error
    显著性
    Significance
    耕地受灾率 −1.203 0.265 0.000
    农村劳动力高中及以上文化水平比例 0.077 0.021 0.000
    机械化程度 −0.006 0.008 0.486
    政府农林水支出 0.001 0.001 0.278
    年均降雨量 0.000 0.000 0.673
    种植结构 0.461 0.118 0.000
    农村劳动力转移量 −0.002 0.003 0.473
    农村居民消费价格指数 −0.007 0.009 0.445
    农业收入占农村常住居民人均可支配收入比例 0.083 0.030 0.006
    下载: 导出CSV
  • [1] Singh R K, Joshi P K, Sinhai V S P, et al. Indicator based assessment of food security in SAARC nations under the influence of climate change scenarios[J]. Future Foods, 2022, 5: 100122. doi: 10.1016/j.fufo.2022.100122
    [2] Patel S K, Sharma A, Singh G S. Traditional agricultural practices in India: an approach for environmental sustainability and food security[J]. Energy, Ecology and Environment, 2020, 5(3): 253 − 271.
    [3] Fortmann L. Sustainable intensification: Increasing productivity in African food and agricultural systems[J]. Experimental Agriculture, 2011, 48(1): 153.
    [4] Godfray H, Garnett T. Food security and sustainable intensification[J]. Philosophical Transactions - Royal Society. Biological Sciences, 2014, 369(1639): 20120273. doi: 10.1098/rstb.2012.0273
    [5] Melissa F R, Curan A B, Jan D, et al. An integrated approach to monitoring ecosystem services and agriculture: implications for sustainable agricultural intensification in Rwanda[J]. Environmental Monitoring and Assessment:An International Journal, 2017, 189(1): 15. doi: 10.1007/s10661-016-5607-6
    [6] Piao S L, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China[J]. Nature, 2010, 467(7311): 43 − 51. doi: 10.1038/nature09364
    [7] IPCC Third Assessment Report: climate change 2006[R]. Cambridge. Cambridge University Press, 2006: 21.
    [8] Jourdain D, Lairez J, Striffler B, et al. Farmers’ preference for cropping systems and the development of sustainable intensification: a choice experiment approach[J]. Review of Agricultural, Food and Environmental Studies, 2020, 101: 417 − 437. doi: 10.1007/s41130-020-00100-4
    [9] Cassman K G, Grassini P. A global perspective on sustainable intensification research[J]. Nature Sustainability, 2020, 3(4): 262 − 268. doi: 10.1038/s41893-020-0507-8
    [10] Joffre O M, Laurens K, Khoa T. Aquaculture innovation system analysis of transition to sustainable intensification in shrimp farming[J]. Agronomy for Sustainable Development, 2018, 38(3): 34. doi: 10.1007/s13593-018-0511-9
    [11] Nath T K, Jashimuddin M, Hasan M K, et al. The sustainable intensification of agroforestry in shifting cultivation areas of Bangladesh[J]. Agroforestry Systems, 2016, 90(3): 405 − 416. doi: 10.1007/s10457-015-9863-1
    [12] Matsuda M. Intensification level of rice farming in Myanmar: implication for its sustainable development[J]. Environment, Development and Sustainability, 2011, 13: 51 − 64. doi: 10.1007/s10668-010-9247-7
    [13] Kotua B H, Oyinbo O, Irmgard H Z, et al. Smallholder farmers’ preferences for sustainable intensification attributes in maize production: Evidence from Ghana[J]. World Development, 2022, 152: 105789. doi: 10.1016/j.worlddev.2021.105789
    [14] Heidenreich A, Grovermann C, Kadzerea I, et al. Sustainable intensification pathways in Sub-Saharan Africa: Assessing eco-efficiency of smallholder perennial cash crop production[J]. Agricultural Systems, 2022, 195: 103304. doi: 10.1016/j.agsy.2021.103304
    [15] Silva J V, Reidsma P, Baudron F, et al. How sustainable is sustainable intensification? Assessing yield gaps at field and farm level across the globe[J]. Global Food Security, 2021, 30: 100552. doi: 10.1016/j.gfs.2021.100552
    [16] Rudel T K, Paul B, White D, et al. LivestockPlus: Forages, sustainable intensification, and food security in the tropics[J]. Ambio, 2015, 44(7): 685. doi: 10.1007/s13280-015-0676-2
    [17] Xie H L, Huang Y Q, Choi Y, et al. Evaluating the sustainable intensification of cultivated land use based on emergy analysis[J]. Technological Forecasting & Social Change, 2021, 165: 120449.
    [18] Mouratiadou I, Latka C, Hilst F, et al. Quantifying sustainable intensification of agriculture: The contribution of metrics and modelling[J]. Ecological Indicators, 2021, 129: 107870. doi: 10.1016/j.ecolind.2021.107870
    [19] 牛善栋, 吕 晓, 史洋洋. 山东省农地利用可持续集约化的时空格局[J]. 应用生态学报, 2018, 29(2): 607 − 616.
    [20] Chikowo R, Zingore S, Nyamangara J, et al. Approaches to reinforce crop productivity under rain-fed conditions in sub-humid environments in sub-Saharan Africa[M]. Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa, 2015, 235 − 253.
    [21] Owenya M, Mariki W, Stewart A, et al. Conservation agriculture and sustainable crop intensification in Karatu District, Tanzania[J]. Integrated Crop Management, 2012, 3(17): 116 − 127.
    [22] Willy D K, Muyang M, Jayne T. Can economic and environmental benefits associated with agricultural intensification be sustained at high population densities? A farm level empirical analysis[J]. Land Use Policy, 2019, 81: 100 − 110. doi: 10.1016/j.landusepol.2018.10.046
    [23] Prasad P, Damani O M, Sohoni M. How can resource-level thresholds guide sustainable intensification of agriculture at farm level? A system dynamics study of farm-pond based intensification[J]. Agricultural Water Management, 2022, 264: 107385. doi: 10.1016/j.agwat.2021.107385
    [24] Kamanga B C G, Waddington S R, Whitbread A M, et al. Improving the efficiency of use of small amounts of nitrogen and phosphorus fertilizer on smallholder maize in Central Malawi[J]. Experimental Agriculture, 2014, 58(2): 229 − 249.
    [25] Lovell R J, Shennan C, Thuy N N. Sustainable and conventional intensification: How gendered livelihoods influence farming practice adoption in the Vietnamese Mekong River Delta[J]. Environment, Development and Sustainability, 2021, 23(1): 7089 − 7116.
    [26] Balaine L, Dillon E J, Läoolea D, et al. Can technology help achieve sustainable intensification? Evidence from milk recording on Irish dairy farms[J]. Land Use Policy, 2020, 92: 104437. doi: 10.1016/j.landusepol.2019.104437
    [27] 吕 晓, 牛善栋, 谷国政, 等. “新三农”视域下中国耕地利用的可持续集约化: 概念认知与研究框架[J]. 自然资源学报, 2020, 35(9): 2029 − 2043.
    [28] 彭文龙, 吕 晓, 牛善栋. 论耕地利用可持续集约化与农户生计转型[J]. 农业工程学报, 2022, 38(4): 270 − 277.
    [29] Anantha K H, Kaushal K G, Jennie B, et al. Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia[J]. Agricultural Systems, 2021, 194: 103276. doi: 10.1016/j.agsy.2021.103276
    [30] Vine M. Prospects of sustainable intensification of smallholder farming systems: A farmer typology approach[J]. African Journal of Science, Technology, Innovation and Development, 2020, 12(6): 727 − 734. doi: 10.1080/20421338.2019.1711319
    [31] Ruben R, Kruseman G, Kuyvenhoven A. Strategies for sustainable intensification in East African highlands: labor use and input efficiency[J]. Agricultural Economics, 2006, 34(2): 167 − 181. doi: 10.1111/j.1574-0864.2006.00116.x
    [32] Lyu X, Peng W L, Yu W, et al. Sustainable intensification to coordinate agricultural efficiency and environmental protection: a systematic review based on metrological visualization[J]. Journal of Land Use Science, 2021, 16(3): 313 − 338. doi: 10.1080/1747423X.2021.1922524
    [33] Chanes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, (6): 429 − 444.
    [34] Tone K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3): 498 − 509. doi: 10.1016/S0377-2217(99)00407-5
    [35] Tone K. A slacks-based measure of super-efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2002, 143(1): 32 − 41. doi: 10.1016/S0377-2217(01)00324-1
    [36] 赵娟霞, 赵佳悦, 王明浩. 我国环保产业融资效率评价的实证分析[J]. 生态经济, 2021, 37(11): 71 − 77,85.
    [37] 赵荣钦. 城市系统碳循环及土地调控研究[M]. 南京: 南京大学出版社, 2012: 145.
    [38] 赵倩雯. 辽宁省农用地膜残留污染现状分析及建议[J]. 园艺与种苗, 2019, 39(4): 51 − 53, 56.
    [39] 侯孟阳, 邓元杰, 姚顺波. 农村劳动力转移、化肥施用强度与农业生态效率: 交互影响与空间溢出[J]. 农业技术经济, 2021, (10): 79 − 94.
    [40] 崔宁波, 王欣媛, 于 尊. 东北粮食主产区耕地生态效率评价及影响因素分析[J]. 生态经济, 2021, 37(7): 104 − 110.
    [41] 孙 雪. 辽宁地区农业气象灾害的趋势变化及其对粮食产量的影响[J]. 农民致富之友, 2015, (18): 288 − 289,104. doi: 10.3969/j.issn.1003-1650.2015.18.278
    [42] 王平达, 王泽宇. 农村劳动力转移对地区产业结构优化的影响及治理对策[J]. 学术交流, 2021, (12): 94 − 105. doi: 10.3969/j.issn.1000-8284.2021.12.008
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  36
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-11
  • 录用日期:  2022-04-14
  • 修回日期:  2022-04-10
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回