Effects of Different Types of Straw Application on CH4 Emissions and Functional Microbial Quantities in Single-cropping Paddy Fields
-
摘要:
目的 阐明稻田土壤CH4排放及其相关功能微生物对不同种类秸秆施用的响应机制,为稻田生态系统CH4排放预估和减排措施的选择提供理论依据。 方法 以太湖地区典型单季稻田的原柱状土为研究对象,通过设置温室栽培试验,同步监测水稻秸秆(RS)、小麦秸秆(WS)、玉米秸秆(MS)施用模式下水稻各生长期CH4排放通量、水稻产量、土壤微生物量碳氮含量等因子,定量化研究CH4排放相关菌群及功能基因的群落丰度。 结果 与对照相比,RS、WS和MS处理下水稻生长期CH4排放量分别增加289.65%、263.30%和344.43%,单位水稻产量CH4排放量分别增加210.40%、182.35%和282.80%。水稻生育期中,土壤产CH4菌(mcrA)群落丰度呈现上升趋势而CH4氧化菌(pmoA)呈先上升后下降趋势。与对照相比,拔节期RS处理显著增加细菌16S rRNA和pmoA基因拷贝数,成熟期WS处理显著增加mcrA拷贝数,而MS处理对上述基因拷贝数均无显著影响。 结论 相关分析和结构方程模型表明,细菌丰度、产CH4菌丰度、CH4氧化菌丰度和微生物碳氮比(MBC/MBN)是直接影响稻田土壤CH4排放的主要因素。 Abstract:Objective The response mechanism of CH4 emissions and related functional microorganisms in paddy fields to different types of straw were clarified, which will provide a theoretical basis for CH4 emission prediction and mitigation in paddy soils. Method A typical single-season paddy soil in Taihu Lake area was used as the research object, and the greenhouse cultivation experiment was set up to simultaneously monitor the CH4 emission flux, rice yield, soil organic carbon, soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN) and other factors under different straw application treatments (rice straw, RS; wheat straw, WS; maize straw, MS) . The above factors were coupled with the microbial processes of CH4 generation and oxidation, in which the community abundances of CH4 emission-related microbes were quantitatively by molecular biology technology. Then the microbial response mechanism of CH4 emissions to different types of straw application was elucidated. Results The results showed that CH4 emissions during rice growing period were significantly increased by 289.65%, 263.30% and 344.43% by RS, MS and WS treatments, respectively, and CH4 emissions per unit yield increased by 210.40%, 182.35% and 282.80%, respectively. The seasonal dynamics of soil methanogenes (mcrA) abundance showed an upward trend along the rice growth, while the methanotrophs (pmoA) showed an upward and then downward trend. The RS treatment significantly increased the copy numbers of bacterial 16S rRNA and pmoA genes at the rice jointing stage, and the WS treatment significantly increased the copy number of mcrA gene during the mature stage, but the MS treatment had no significant effect on the above copy numbers. Conclusion Correlation analysis and structural equation models showed that the abundances of bacterial, methanogens and methanotrophs, and microbial carbon-nitrogen ratio (MBC/MBN) were the main factors directly affecting CH4 emission from paddy fields. -
Key words:
- Straw types /
- Paddy field /
- CH4 emission /
- Soil microorganism /
- Structural equation model
-
图 4 土壤理化因子和微生物丰度对水稻生长期CH4排放影响的结构方程模型
路径旁边显示标准化的路径系数。实箭头和虚箭头分别表示P < 0.05和P > 0.05。箭头的宽度与路径系数的程度成正比。绿色和红色箭头分别表示正相关关系和负相关, 模型拟合系数:gfi:0.949 rmsea:0.000 srmr:0.0014
Figure 4. Structural equation model for the effects of soil physical and chemical factors and microbial abundance on CH4 emissions during rice growth season
表 1 供试秸秆基本性质
Table 1. Basic properties of tested straw
供试秸秆
Straw总氮(%)
Total nitrogen总磷(%)
Total phosphorus总钾(%)
Total potassium总碳(%)
Total carbon碳氮比
C/N水稻秸秆(RS) 1.49 ± 0.08 a 0.21 ± 0.02 b 1.54 ± 0.12 b 39.30 ± 0.05 a 26.35 ± 1.12 b 小麦秸秆(WS) 1.22 ± 0.08 b 0.07 ± 0.01 c 0.91 ± 0.01 c 36.70 ± 0.14 a 30.06 ± 2.10 ab 玉米秸秆(MS) 1.04 ± 0.07 c 1.98 ± 0.00 a 1.98 ± 0.00 a 36.00 ± 0.14 b 34.59 ± 2.37 a 注:同列不同字母表示处理间差异显著(P < 0.05) 表 2 各处理水稻各生育期CH4排放量、CH4排放总量、水稻产量和单位产量CH4排放量
Table 2. CH4 emission in each period, total CH4 emission, rice grain yield and CH4 emission per unit output during rice season in 2020
处理
TreatmentCH4总排放量
CH4 total emission
(g m–2)CH4排放量(g m–2)
CH4 emission水稻产量
Yield
(g pot–1)单位水稻产量CH4排放量
CH4 emission per unit
(pot m–2)前期淹水
Water flooding烤田
Baking field干湿交替
Dry-wet alternation排水落干
Drain and dryCK 225.11 ± 20.47 b 46.05 ± 16.10 Bb 28.51 ± 12.78 Cb 77.72 ± 1.96 ABb 100.49 ± 6.43 Ab 101.80 ± 1.41 b 2.21 ± 0.25 b RS 877.13 ± 113.36 a 309.67 ± 58.31 Aa 134.70 ± 25.42 Ba 309.75 ± 55.93 Aa 203.08 ± 7.07 ABa 127.83 ± 1.89 a 6.86 ± 0.94 a WS 817.82 ± 159.58 a 385.16 ± 76.98 Aa 123.09 ± 22.91 Ba 238.09 ± 46.12 ABa 144.96 ± 26.91 Bab 130.97 ± 5.32 a 6.24 ± 1.39 a MS 1000.46 ± 173.00 a 459.14 ± 124.96 Aa 167.51 ± 45.23 Ba 291.87 ± 43.01 ABa 181.06 ± 23.07 Ba 118.30 ± 2.80 a 8.46 ± 1.38 a 注:同列用不同小写字母表示处理间数据差异显著,同行用大写字母表示数据差异显著不同水分管理时期数据差异显著(P < 0.05)。处理CK、RS、WS、MS分别代表空白对照处理、施用水稻秸秆处理、施用小麦秸秆处理、施用玉米秸秆处理。 表 3 水稻生长季CH4排放与土壤微生物种群数量和微生物碳氮的相关性
Table 3. Correlation among CH4 emission, the abundance of soil microbial communities and microbial carbon and nitrogen
CH4 16S rRNA mcrA pmoA mcrA/pmoA MBC MBN MBC/MBN CH4 1 −0.200 0.400* −0.180 0.232 −0.174 0.054 −0.247 16S rRNA −0.200 1 −0.161 0.966** −0.146 0.425** 0.188 −0.008 mcrA 0.400* −0.161 1 −0.168 0.425** −0.137 0.057 −0.096 pmoA −0.180 0.966** −0.168 1 −0.146 0.454** 0.233 0.038 mcrA/pmoA 0.232 −0.146 0.425** −0.146 1 −0.059 0.027 −0.037 MBC −0.174 0.425** −0.137 0.454** −0.059 1 0.150 0.229 MBN 0.054 0.188 0.057 0.233 0.027 0.150 1 −0.319 MBC/MBN −0.247 −0.008 −0.096 0.038 −0.037 0.229 −0.319 1 注:皮尔逊双尾显著性检验,n = 48;*和**分别表示在0.05和0.01水平上相关性显著。CH4: CH4:排放通量; 16S rRNA: 细菌16S rRNA基因拷贝数; mcrA: 产CH4:菌mcrA基因拷贝数; pmoA: CH4:氧化菌pmoA基因拷贝数; mcrA/pmoA: 产CH4:菌mcrA基因拷贝数和CH4:氧化菌pmoA基因拷贝数的比值; MBC: 土壤微生物碳; MBN: 土壤微生物氮; MBC/MBN: 土壤微生物碳含量和土壤微生物氮含量的比值, 下同. -
[1] Guo J, Zhou C. Greenhouse gas emissions and mitigation measures in Chinese agroecosystems[J]. Agricultural & Forest Meteorology, 2007, 142(2): 270 − 277. [2] IPCC. Global warming of 1.5 ℃[EB/OL]. [2020-06-06]. https://www.ipcc.ch/sr15/ [3] Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved[J]. Environmental Microbiology Reports, 2009, 1: 285 − 292. doi: 10.1111/j.1758-2229.2009.00038.x [4] Conrad R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal[J]. Org. Geochem, 2005, 36: 739 − 752. doi: 10.1016/j.orggeochem.2004.09.006 [5] Bédard C, Knowles R. Physiology, biochemistry and specific inhibitors of CH4, NH4 + and CO oxidation by methanotrophs and nitrifiers[J]. Microbiological Reviews, 1989, 53(1): 68 − 84. doi: 10.1128/mr.53.1.68-84.1989 [6] Whalen S C. Influence of N and non-N salts on atmospheric methane oxidation by upland boreal forest and tundra soils[J]. Biology and Fertility of Soils, 2000, 31: 279 − 287. doi: 10.1007/s003740050657 [7] 李 月, 张水清, 韩燕来, 等. 长期秸秆还田与施肥对潮土酶活性和真菌群落的影响[J]. 生态环境学报, 2020, 29(7): 1359 − 1366. doi: 10.16258/j.cnki.1674-5906.2020.07.010 [8] 张翰林, 吕卫光, 郑宪清, 等. 不同秸秆还田年限对稻麦轮作系统温室气体排放的影响[J]. 中国生态农业学报, 2015, 23(3): 302 − 308. doi: 10.13930/j.cnki.cjea.141079 [9] 王海候, 沈明星, 陆长婴, 等. 不同秸秆还田模式对稻麦两熟农田稻季甲烷和氧化亚氮排放的影响[J]. 江苏农业学报, 2014, 30(4): 758 − 763. [10] 郝帅帅. 秸秆还田对稻麦产量和农田温室气体排放的影响[D]. 扬州: 扬州大学, 2017. [11] 鲍远航. 太湖流域农田生态系统甲烷排放模拟与评估[D]. 南京: 南京师范大学, 2021. [12] 李成芳, 寇志奎, 张枝盛, 等. 秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响[J]. 农业环境科学学报, 2011, 30(11): 2362 − 2367. [13] Bao Q L, Xiao K Q, Chen Z, et al. Methane production and methanogenic archaea communities in two type of paddy soil amended with different amounts of rice straw[J]. Fems Microbiology Ecology, 2014, 88(2): 372 − 385. doi: 10.1111/1574-6941.12305 [14] 唐海明, 肖小平, 汤文光, 等. 长期施肥对双季稻田甲烷排放和关键功能微生物的影响[J]. 生态学报, 2017, 37(22): 7668 − 7678. [15] Tang S, Cheng W, Hu R, et al. Simulating the effects of soil temperature and moisture in the off-rice season on rice straw decomposition and subsequent CH4, production during the growth season in a paddy soil[J]. Biology and Fertility of Soils, 2016, 52: 739 − 748. doi: 10.1007/s00374-016-1114-8 [16] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703 − 707. doi: 10.1016/0038-0717(87)90052-6 [17] Kolb S, Knief C, Dunfield P F, et al. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils[J]. Environmental Microbiology, 2005, 7: 1150 − 1161. doi: 10.1111/j.1462-2920.2005.00791.x [18] Stubner S. Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen (TM) detection[J]. Journal of Microbiological Methods, 2002, 50: 155 − 164. doi: 10.1016/S0167-7012(02)00024-6 [19] Steinberg L M, Regan J M. Phylogenetic Comparison of the Methanogenic Communities from an Acidic, Oligotrophic Fen and an Anaerobic Digester Treating Municipal Wastewater Sludge[J]. Applied and Environmental Microbiology, 2008, 74: 6663 − 6671. doi: 10.1128/AEM.00553-08 [20] Costello A M, Lidstrom M E. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments[J]. Applied and Environmental Microbiology, 1999, 65(11): 5066 − 5074. doi: 10.1128/AEM.65.11.5066-5074.1999 [21] Muver G, de Wial E C, Uterlnden A G. Profling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 168 rRNA[J]. Applied and Environmental Microbiology, 1993, 59(3): 695 − 700. doi: 10.1128/aem.59.3.695-700.1993 [22] Barbier B A, Dziduch L, Liebner S, et al. Methane cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: Active layer profiling of mcrA and pmoA genes[J]. FEMS Microbiology Ecology, 2012, 82(2): 287 − 302. doi: 10.1111/j.1574-6941.2012.01332.x [23] Theisen A R, Ali M H, Radajewski, S, et al. Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2[J]. Molecular Microbiology, 2005, 58(3): 682 − 692. doi: 10.1111/j.1365-2958.2005.04861.x [24] Conrad R, Klose M, Lu Y, et al. Methanogenic pathway and archaeal communities in three different anoxic soils amended with rice straw and maize straw[J]. Frontiers in Microbiology, 2012, 3: 4. [25] Conrad R, Klose M, Noll M. Functional and structural response of the ethanogenic microbial community in rice field soil to temperature change[J]. Environmental Microbiology, 2009, 11: 1844 − 1853. doi: 10.1111/j.1462-2920.2009.01909.x [26] 蔡 非. 秸秆-生物炭对稻田土壤甲烷排放的影响及机制初探[D]. 杭州: 浙江大学, 2017. [27] 邹建文, 黄 耀, 宗良纲, 等. 稻田CO2, CH4和 N2O 排放及其影响因素[J]. 环境科学学报, 2003, 23(6): 758 − 764. [28] 田 昌, 周 旋, 黄思怡, 等. 控释尿素减施对稻田CH4和N2O排放及经济效益的影响[J]. 生态环境学报, 2019, 28(11): 2223 − 2230. [29] 蔡祖聪, 徐 华, 马 静. 稻田生态系统CH4和N2O排放[M]. 合肥: 中国科学技术大学出版社, 2009. [30] 陈美慈, 闵 航, 钱泽澎. 水稻田中产甲烷细菌数量和优势种[J]. 土壤学报, 1993, 30(4): 432 − 437. [31] 陈中云, 闵 航, 陈美慈, 等. 不同水稻土甲烷氧化菌和产甲烷菌数量与甲烷排放量之间相关性的研究[J]. 生态学报, 2001, 21(9): 1498 − 1505. doi: 10.3321/j.issn:1000-0933.2001.09.015 [32] 陈玉泉. 稻田甲烷的产生及其环境的关系[J]. 江苏农业科学, 2003, 2003(3): 91 − 93. doi: 10.3969/j.issn.1002-1302.2003.03.035 [33] 胡国辉, 王军可, 王亚梁, 等. 生物可降解膜覆盖对水稻温室气体排放及产量的影响[J]. 生态环境学报, 2020, 29(5): 977 − 986. doi: 10.16258/j.cnki.1674-5906.2020.05.014 [34] 张岳芳, 郑建初, 陈留根, 等. 水旱轮作稻田旱作种植不同作物对CH4和N2O排放的影响[J]. 生态环境学报, 2012, 21(9): 1521 − 1526. doi: 10.3969/j.issn.1674-5906.2012.09.003 [35] Yanni S F, Whalen J K, Simpson M J, et al. Plant lignin and nitrogen contents control carbon dioxide production and nitrogen mineralization in soils incubated with Bt and non-Bt corn residues[J]. Soil Biology and Biochemistry, 2011, 43(1): 63 − 69. doi: 10.1016/j.soilbio.2010.09.012 [36] Lyu M K, Nie Y Y, Giardina C P, et al. Litter quality and site characteristics interact to affect the response of priming effect to temperature in subtropical forests[J]. Functional Ecology, 2019, 33(11): 2226 − 2238. doi: 10.1111/1365-2435.13428 [37] 丁维新, 蔡祖聪. 氮肥对土壤甲烷产生的影响[J]. 农业环境科学学报, 2003, 22(3): 380 − 383. doi: 10.3321/j.issn:1672-2043.2003.03.034 [38] 朱雅琪, 王 珊, 柳 勇, 等. 腐秆剂用量、含水量及初始碳氮比对水稻秸秆腐解性能的影响初探[J]. 生态环境学报, 2019, 28(03): 601 − 611. doi: 10.16258/j.cnki.1674-5906.2019.03.022 [39] 石 琳, 金梦灿, 单旭东, 等. 不同形态氮素对玉米秸秆腐解与养分释放的影响[J]. 农业资源与环境学报, 2020, 38(2): 277 − 285. doi: 10.13254/j.jare.2020.0086 [40] 王丽娜, 罗久富, 杨梅香, 等. 氮添加对退化高寒草地土壤做生物量碳氨的影响[J]. 草业学报, 2019, 28(7): 38 − 48. doi: 10.11686/cyxb2018429 [41] Nyknen H, Vasander H, Huttunen J T, et al. Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland[J]. Plant and Soil, 2002, 242(1): 147 − 155. doi: 10.1023/A:1019658428402 [42] 刘子刚, 卢海博, 赵海超, 等. 旱作区春玉米秸秆还田方式对土壤微生物量碳氮磷及酶活性的影响[J/OL]. 西北农业学报, 2022, 31(2): 183-192. -