留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

麦秸配施纤维素降解细菌对果园土壤有机碳库及生化特性的影响

郎冬梅 宫诚 朱紫檀 郝峰鸽 周瑞金 扈惠灵 张鹏

郎冬梅, 宫 诚, 朱紫檀, 郝峰鸽, 周瑞金, 扈惠灵, 张 鹏. 麦秸配施纤维素降解细菌对果园土壤有机碳库及生化特性的影响[J]. 土壤通报, 2023, 54(2): 317 − 327 doi: 10.19336/j.cnki.trtb.2022033002
引用本文: 郎冬梅, 宫 诚, 朱紫檀, 郝峰鸽, 周瑞金, 扈惠灵, 张 鹏. 麦秸配施纤维素降解细菌对果园土壤有机碳库及生化特性的影响[J]. 土壤通报, 2023, 54(2): 317 − 327 doi: 10.19336/j.cnki.trtb.2022033002
LANG Dong-mei, GONG Cheng, ZHU Zi-tan, HAO Feng-ge, ZHOU Rui-jin, HU Hui-ling, ZHANG Peng. Effects of the Combined Application of Wheat Straw and Cellulose Degrading Bacteria on Soil Organic Carbon Pool and Biochemical Properties in Orchards[J]. Chinese Journal of Soil Science, 2023, 54(2): 317 − 327 doi: 10.19336/j.cnki.trtb.2022033002
Citation: LANG Dong-mei, GONG Cheng, ZHU Zi-tan, HAO Feng-ge, ZHOU Rui-jin, HU Hui-ling, ZHANG Peng. Effects of the Combined Application of Wheat Straw and Cellulose Degrading Bacteria on Soil Organic Carbon Pool and Biochemical Properties in Orchards[J]. Chinese Journal of Soil Science, 2023, 54(2): 317 − 327 doi: 10.19336/j.cnki.trtb.2022033002

麦秸配施纤维素降解细菌对果园土壤有机碳库及生化特性的影响

doi: 10.19336/j.cnki.trtb.2022033002
基金项目: 河南省重点研发与推广专项-科技攻关项目(202102110054/202102110051)资助
详细信息
    作者简介:

    郎冬梅(1990−),女,辽宁铁岭人,博士,讲师,果树栽培与生理生态。E-mail: langdongmei1990@126.com

    通讯作者:

    E-mail: zhangpeng1922@163.com

  • 中图分类号: S144

Effects of the Combined Application of Wheat Straw and Cellulose Degrading Bacteria on Soil Organic Carbon Pool and Biochemical Properties in Orchards

  • 摘要:   目的  研究果园土壤有机碳库及生化性质对小麦秸秆还田配施不同纤维素降解细菌的响应特点。  方法  以豫北碱性果园土壤为研究对象,采用室内培养法,以不添加麦秸及纤维素降解菌为对照(CK),研究仅添加麦秸(S)及麦秸分别配施尼氏芽孢杆菌(Bacillus nealsonii,S + B)、科恩氏菌(Cohnella,S + C)、灿烂类芽孢杆菌(Paenibacillus lautus,S + P)处理对土壤有机碳含量、酶活性、速效养分含量及盐碱性的影响。  结果  培养100 d内有机碳矿化速率呈现先升高后下降的趋势,且与一级动力学模型高度拟合。麦秸配施纤维素降解菌处理的土壤有机碳矿化速率、累计矿化量及潜在可矿化碳含量均高于S处理。S + B处理的土壤总有机碳、微生物量碳、水溶性有机碳和易氧化有机碳含量分别比S处理提高10.14%、35.53%、26.27%和24.34%。麦秸配施纤维素降解菌提高土壤碳库管理指数和土壤酶活性,其中S + B处理的纤维素酶、碱性磷酸酶及脱氢酶活性均显著高于S处理。与仅添加麦秸相比,麦秸配施纤维素降解菌显著增加土壤速效氮、磷、钾及可交换性镁含量,降低可交换钙含量和pH值。土壤速效氮、磷及微生物量碳是影响有机碳矿化的主要因素。  结论  麦秸配施纤维素降解菌显著提高土壤有机碳库活度及含量,改善土壤生化性质,以尼氏芽孢杆菌的促进作用相对较高。
  • 图  1  添加麦秸及纤维素降解菌对CO2释放速率(a)、累计矿化量(b)的影响

    数据为平均值 ± 标准差(n = 3)。CK为对照,即不添加麦秸及纤维素降解菌处理;S为添加麦秸处理;S + B、S + C和S + P分别为麦秸配施尼氏芽孢杆菌、科恩氏菌、灿烂类芽孢杆菌处理。不同小写字母表示不同处理之间差异显著(P < 0.05),下同。

    Figure  1.  The effect of wheat straw and cellulose degrading bacteria on the CO2 efflux rate (a), and cumulative mineralization content (b)

    图  2  添加麦秸及纤维素降解菌对土壤总SOC及活性碳库组分含量的影响

    Figure  2.  Effects of wheat straw and cellulose degrading bacteria on contents of soil organic carbon and active fractions in soil

    图  3  添加麦秸及纤维素降解菌对土壤β-葡萄糖苷酶(a)、蔗糖酶(b)及纤维素酶(c)活性的影响

    Figure  3.  Effects of wheat straw and cellulose degrading bacteria on the activities of β-glucosidase (a), invertase (b) and cellulase (c) in soil

    图  4  添加麦秸及纤维素降解菌种对土壤脲酶(a)、碱性磷酸酶(b)、脱氢酶(c)及过氧化氢酶(d)活性的影响

    Figure  4.  Effects of wheat straw and cellulose degrading bacteria on the activities of urease(a), alkaline phosphatase (b), dehydrogenase (c) and catalase (d) in soil

    图  5  添加麦秸及纤维素降解菌对土壤速效氮(a)、磷(b)、钾(c)以及可交换Mg2 + (d)、Ca2 + (e)、Na + (f)含量的影响

    Figure  5.  Effects of wheat straw and cellulose degrading bacteria on the contents of available N(a), P(b), K(c) and exchangeable Mg2 + (d), Ca2 + (e) and Na + (f) in soil

    图  6  有机碳矿化与土壤生化性质之间冗余分析(a)及相关性分析(b)

    AKP、GLU、CAT和SS分别为碱性磷酸酶、β-葡萄糖苷酶、过氧化氢酶、蔗糖酶、脱氢酶。*显著相关,**极显著相关。

    Figure  6.  The redundancy and relationship analysis between organic carbon mineralization and soil biochemical properties

    表  1  有机碳矿化动力学参数

    Table  1.   Parameters of kinetics of organic carbon mineralization

    处理
    Treatment
    C0
    (mg kg–1)
    C1
    (mg kg–1)
    C0/SOC
    (%)
    k
    (d–1)
    T1/2PR2
    CK 20.83 ± 0.29 c 0.61 ± 0.07 ab 0.29 ± 0.00 b 0.01 ± 0.00 a 5.12 ± 0.04 a 0.0009 0.97
    S 24.52 ± 1.38 b 0.73 ± 0.05 ab 0.32 ± 0.02 ab 0.01 ± 0.00 a 5.03 ± 0.07 a < 0.0001 0.99
    S + B 28.29 ± 0.80 a 0.84 ± 0.11 a 0.34 ± 0.01 ab 0.01 ± 0.00 a 5.07 ± 0.08 a < 0.0001 0.99
    S + C 27.99 ± 0.67 a 0.56 ± 0.07 b 0.33 ± 0.01 ab 0.01 ± 0.00 a 5.05 ± 0.05 a < 0.0001 0.99
    S + P 29.31 ± 1.05 a 0.65 ± 0.22 ab 0.35 ± 0.01 a 0.01 ± 0.00 a 5.12 ± 0.09 a < 0.0001 0.99
      注:数据为平均值 ± 标准差(n = 3)。C0为潜在可矿化有机碳,C1为易矿化有机碳,k为有机碳库的周转速率常数;T1/2为半周转期。CK为对照,即不添加麦秸及纤维素降解菌;S为仅添加麦秸处理;S + B、S + C和S + P分别为麦秸分别配施接种尼氏芽孢杆菌、科恩氏菌、灿烂类芽孢杆菌处理。同列不同小写字母表示不同处理之间差异显著(P < 0.05),下同。
    下载: 导出CSV

    表  2  土壤活性碳库组分含量占总SOC比例

    Table  2.   The percentages of soil active carbon fractions on the total SOC content

    处理
    Treatment
    MBC/SOC
    (%)
    DOC/SOC
    (%)
    ROC/SOC
    (%)
    CK 0.64 ± 0.08 d 9.98 ± 0.42 b 11.19 ± 0.42 bc
    S 1.23 ± 0.05 c 10.02 ± 0.30 b 11.98 ± 0.89 b
    S + B 1.51 ± 0.04 b 11.49 ± 0.46 a 13.52 ± 0.80 a
    S + C 1.25 ± 0.10 c 9.74 ± 0.50 b 10.33 ± 0.58 c
    S + P 1.94 ± 0.17 a 9.69 ± 0.91 b 12.26 ± 0.85 ab
    下载: 导出CSV

    表  3  添加麦秸及纤维素降解菌对土壤碳库指数的影响

    Table  3.   Effect of wheat straw and cellulose degrading bacteria on soil carbon pool management indices

    处理
    Treatment
    稳定有机碳(g kg–1)
    Stable organic C
    碳有效率(%)
    Efficiency of C
    碳库活度
    Activity of C pool
    碳库指数
    Index of C pool
    碳库活度指数
    Index of C pool activity
    碳库管理指数
    Index of C pool management
    CK 6.36 ± 0.20 b 11.2 ± 0.67 bc 0.13 ± 0.01 bc 0.98 ± 0.02 c 0.94 ± 0.04 bc 91.65 ± 1.67 d
    S 6.73 ± 0.07 b 12.0 ± 0.89 abc 0.14 + 0.01 abc 1.04 ± 0.00 b 1.04 ± 0.09 abc 109.12 ± 9.26 bc
    S + B 7.28 ± 0.18 a 13.5 ± 0.76 a 0.16 + 0.01 a 1.15 ± 0.03 a 1.20 ± 0.08 a 138.08 ± 9.29 a
    S + C 7.65 ± 0.43 a 10.4 ± 0.97 c 0.12 + 0.01 c 1.17 + 0.05 a 0.89 ± 0.09 c 103.17 ± 6.89 cd
    S + P 7.39 ± 0.27 a 12.3 ± 1.12 ab 0.14 + 0.01 ab 1.15 ± 0.03 a 1.07 ± 0.11 ab 123.47 ± 10.10 ab
    下载: 导出CSV

    表  4  添加麦秸及纤维素降解菌种对土壤盐碱特性的影响

    Table  4.   Effects of wheat straw and cellulose degrading bacteria on characteristics of salinity in soil

    处理
    Treatment
    pH值
    pH value
    电导率(μS cm–1)
    EC
    HCO3
    (g kg–1)
    Cl
    (g kg–1)
    CK 8.00 ± 0.05 a 231.67 ± 2.08 cd 0.08 ± 0.00 a 0.15 ± 0.00 c
    S 7.91 ± 0.01 b 229.00 ± 6.56 d 0.08 ± 0.00 a 0.16 ± 0.01 c
    S + B 7.88 ± 0.03 bc 258.67 ± 9.29 a 0.08 ± 0.00 a 0.16 ± 0.01 c
    S + C 7.84 ± 0.04 c 242.33 ± 4.93 bc 0.09 ± 0.01 a 0.19 ± 0.01 b
    S + P 7.77 ± 0.04 d 243.33 ± 5.03 b 0.09 ± 0.01 a 0.23 ± 0.02 a
    下载: 导出CSV
  • [1] 姜远茂, 葛顺峰, 毛志泉, 等. 我国苹果产业节本增效关键技术Ⅳ: 苹果高效平衡施肥技术[J]. 中国果树, 2017, (4): 1 − 4 + 13.
    [2] 李廷亮, 王宇峰, 王嘉豪, 等. 我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示[J]. 中国农业科学, 2020, 53(23): 4835 − 4854. doi: 10.3864/j.issn.0578-1752.2020.23.010
    [3] Cao H, Jia M, Song J, et al. Rice-straw mat mulching improves the soil integrated fertility index of apple orchards on cinnamon soil and fluvo-aquic soil[J]. Scientia Horticulture, 2021, 278: 109837. doi: 10.1016/j.scienta.2020.109837
    [4] 陈丽鹃, 周冀衡, 陈 闺, 等. 秸秆还田对作物土传病害的影响及作用机制研究进展[J]. 作物研究, 2018, 32(6): 535 − 540.
    [5] 江高飞, 杨天杰, 郑海平, 等. 降解玉米秸秆真菌复合菌系的构建及其降解效果评价[J]. 植物营养与肥料学报, 2021, 27(2): 284 − 292. doi: 10.11674/zwyf.20363
    [6] 姚云柯, 周 卫, 孙建光, 等. 田间条件下不同促腐菌对水稻秸秆腐解及胞外酶活性的影响[J]. 植物营养与肥料学报, 2020, 26(11): 2070 − 2080. doi: 10.11674/zwyf.20264
    [7] 王学霞, 张 磊, 梁丽娜, 等. 秸秆还田对麦玉系统土壤有机碳稳定性的影响[J]. 农业环境科学学报, 2020, 39(8): 1774 − 1782. doi: 10.11654/jaes.2020-0010
    [8] Kan Z R, Virk A L, Wu G, et al. Priming effect intensity of soil organic carbon mineralization under no-till and residue retention[J]. Applied Soil Ecology, 2020, 147: 103445. doi: 10.1016/j.apsoil.2019.103445
    [9] Draganova D, Valcheva I, Kuzmanova Y, et al. Effect of wheat straw and cellulose degrading fungi of genus Trichoderma on soil respiration and cellulase, betaglucosidase and soil carbon content[J]. Agricultural Science Technology, 2018, 10(4): 349 − 353. doi: 10.15547/10.15547/ast.2018.04.064
    [10] 张 影, 刘 星, 任秀娟, 等. 秸秆及其生物炭对土壤碳库管理指数及有机碳矿化的影响[J]. 水土保持学报, 2019, 33(3): 153 − 159 + 165.
    [11] 杨艳华, 苏 瑶, 何振超, 等. 还田秸秆碳在土壤中的转化分配及对土壤有机碳库影响的研究进展[J]. 应用生态学报, 2019, 30(2): 668 − 676.
    [12] 杨 苏, 刘耀斌, 王 静, 等. 不同有机物料投入下黄河故道土壤有机碳积累特征的研究[J]. 土壤, 2021, 53(2): 361 − 367.
    [13] 常洪艳, 王天野, 黄梓源, 等. 秸秆降解菌对秸秆降解率、土壤理化性质及酶活性的影响[J]. 华北农学报, 2019, 34(S1): 161 − 167. doi: 10.7668/hbnxb.20190347
    [14] 魏 蔚, 吴 昊, 宋时丽, 等. 复合菌剂对小麦秸秆降解速率、土壤酶和土壤微生物类群的影响[J]. 土壤, 2019, 51(5): 955 − 963. doi: 10.13758/j.cnki.tr.2019.05.016
    [15] 朱 浩, 刘珂欣, 刘维维, 等. 极端耐盐碱菌株的筛选及其菌肥对盐碱条件下小麦生长和土壤环境的影响[J]. 应用生态学报, 2019, 30(7): 2338 − 2344. doi: 10.13287/j.1001-9332.201907.039
    [16] Soon Y K, Arshad M A. Comparison of the decomposition and N and P mineralization of canola, pea and wheat residues[J]. Biology and Fertility of Soils, 2002, 36(1): 10 − 17. doi: 10.1007/s00374-002-0518-9
    [17] Qiu Z, Egidi E, Liu H, et al. New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering[J]. Biotechnology Advances, 2019, 37(6): 107371. doi: 10.1016/j.biotechadv.2019.03.010
    [18] Bekku Y, Koizumi H, Oikawa T, Iwaki H. Examination of four methods for measuring soil respiration[J]. Applied Soil Ecology, 1997, 5(3): 247 − 254. doi: 10.1016/S0929-1393(96)00131-X
    [19] 吕真真, 刘秀梅, 仲金凤, 等. 长期施肥对红壤性水稻土有机碳矿化的影响[J]. 中国农业科学, 2019, 52(15): 2636 − 2645. doi: 10.3864/j.issn.0578-1752.2019.15.008
    [20] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005: 23-107.
    [21] 张金彪, 王 玉 (王 从). 火焰原子吸收法快速测定土壤中钙和镁[J]. 光谱学与光谱分析, 1993, 13(6): 79 − 84.
    [22] Trivedi P, Singh B P, Singh B K. Soil Carbon: Introduction, Importance, Status, Threat, and Mitigation[M]. New York: Academic Press, 2018: 1-28.
    [23] 魏夏新, 熊俊芬, 李 涛, 等. 有机物料还田对双季稻田土壤有机碳及其活性组分的影响[J]. 应用生态学报, 2020, 31(7): 2373 − 2380.
    [24] 马 超, 周 静, 刘满强, 等. 秸秆促腐还田对土壤养分及活性有机碳的影响[J]. 土壤学报, 2013, 50(5): 915 − 921. doi: 10.11766/trxb201205040163
    [25] Xu M G, Lou Y L, Sun X L, et al. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation[J]. Biology and Fertility of Soils, 2011, 47: 745 − 752. doi: 10.1007/s00374-011-0579-8
    [26] Li J, Wen Y, Li X, et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Soil Tillage Research, 2018, 175: 281 − 290. doi: 10.1016/j.still.2017.08.008
    [27] Naresh R K, Gupta R K, Prasad K S K, et al. Impact of conservation tillage on soil organic carbon storage and soil labile organic carbon fractions of different textured soils under rice-wheat cropping system: A review[J]. Journal of Pharmacognosy and Phytochemistry, 2018, 7(3): 2545 − 2562.
    [28] Ghosh A, Bhattacharyya R, Meena MC, et al. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol[J]. Soil Tillage Research, 2018, 177: 134 − 144. doi: 10.1016/j.still.2017.12.006
    [29] 熊翱宇, 程 谅. 长期施肥对南方红壤碳库管理指数的影响[J]. 水土保持研究, 2021, 28(1): 73 − 79. doi: 10.13869/j.cnki.rswc.2021.01.009
    [30] 张思奇, 刘红军, 沈宗专, 等. 外包木霉内含芽孢杆菌颗粒生物有机肥研制及其促生效应[J]. 土壤通报, 2022, 53(2): 465 − 471.
    [31] 陈潼樾, 李明堂, 郎立娜, 等. 耐盐碱类芽孢杆菌C1对苏打盐碱土团聚体的影响特征[J/OL]. 吉林农业大学学报: 1 − 10. Doi: 10.13327/j.jjlau.2021.1185.
    [32] 肖 烨, 黄志刚, 武海涛, 等. 三江平原4种典型湿地土壤碳氮分布差异和微生物特征[J]. 应用生态学报, 2014, 25(10): 2847 − 2854.
    [33] Wichern F, Islam M R, Hemkemeyer M, et al. Organic amendments alleviate salinity effects on soil microorganisms and mineralisation processes in aerobic and anaerobic paddy rice soils[J]. Frontiers in Sustainable Food Systems, 2020, 4: 1 − 14. doi: 10.3389/fsufs.2020.00001
    [34] 姜振辉, 师江澜, 贾 舟, 等. 秸秆还田配施中微量元素对农田土壤有机碳固持的影响[J]. 应用生态学报, 2016, 27(4): 1196 − 1202.
    [35] Beauvois A, Vantelon D J, Rivard C, et al. How does calcium drive the structural organization of iron–organic matter aggregates? A multiscale investigation[J]. Environmental Science:Nano, 2020, 7(9): 2833 − 2849. doi: 10.1039/D0EN00412J
    [36] 郭春雷, 李 娜, 彭 靖, 等. 秸秆直接还田及炭化还田对土壤酸度和交换性能的影响[J]. 植物营养与肥料学报, 2018, 24(5): 1205 − 1213. doi: 10.11674/zwyf.17482
    [37] Senesi N, Plaza C. Role of humification processes in recycling organic wastes of various nature and sources as soil amendments[J]. Clean Soil Air Water, 2007, 35(1): 26 − 41. doi: 10.1002/clen.200600018
    [38] 张子璇, 牛蓓蓓, 李新举. 不同改良模式对滨海盐渍土土壤理化性质的影响[J]. 生态环境学报, 2020, 29(2): 275 − 284.
    [39] Mehdizadeh L, Moghaddam M, Lakzian A. Amelioration of soil properties, growth and leaf mineral elements of summer savory under salt stress and biochar application in alkaline soil[J]. Scientia Horticulturae, 2020, 267: 109319. doi: 10.1016/j.scienta.2020.109319
    [40] Miller J J, Beasley B W, Larney F J, et al. Soil salinity and sodicity after application of fresh and composted manure with straw or wood-chips[J]. Canadian Journal of Soil Science, 2005, 85(3): 427 − 438. doi: 10.4141/S04-066
    [41] 王庆蒙, 景宇鹏, 李跃进, 等. 不同培肥措施对河套灌区盐碱地改良效果[J]. 中国土壤与肥料, 2020, (5): 124 − 131. doi: 10.11838/sfsc.1673-6257.19410
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  29
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 录用日期:  2022-07-23
  • 修回日期:  2022-05-01
  • 刊出日期:  2023-04-06

目录

    /

    返回文章
    返回