留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油葵和苦荬菜根际土壤中镉和锌的活化机制及修复潜力比较

曾春阳 曾馨怡 邓昭赞 杨洋 邹冬生 曾清如

曾春阳, 曾馨怡, 邓昭赞, 杨 洋, 邹冬生, 曾清如. 油葵和苦荬菜根际土壤中镉和锌的活化机制及修复潜力比较[J]. 土壤通报, 2023, 54(2): 441 − 453 doi: 10.19336/j.cnki.trtb.2022041501
引用本文: 曾春阳, 曾馨怡, 邓昭赞, 杨 洋, 邹冬生, 曾清如. 油葵和苦荬菜根际土壤中镉和锌的活化机制及修复潜力比较[J]. 土壤通报, 2023, 54(2): 441 − 453 doi: 10.19336/j.cnki.trtb.2022041501
ZENG Chun-yang, ZENG Xin-yi, DENG Zhao-zan, YANG Yang, ZOU Dong-sheng, ZENG Qing-ru. Comparison of Helianthus annuus L. and Ixeris polycephala Cass for Cd and Zn Activation Mechanisms in Rhizosphere Soil and Remediation Potential[J]. Chinese Journal of Soil Science, 2023, 54(2): 441 − 453 doi: 10.19336/j.cnki.trtb.2022041501
Citation: ZENG Chun-yang, ZENG Xin-yi, DENG Zhao-zan, YANG Yang, ZOU Dong-sheng, ZENG Qing-ru. Comparison of Helianthus annuus L. and Ixeris polycephala Cass for Cd and Zn Activation Mechanisms in Rhizosphere Soil and Remediation Potential[J]. Chinese Journal of Soil Science, 2023, 54(2): 441 − 453 doi: 10.19336/j.cnki.trtb.2022041501

油葵和苦荬菜根际土壤中镉和锌的活化机制及修复潜力比较

doi: 10.19336/j.cnki.trtb.2022041501
基金项目: 湖南省自然科学基金青年基金项目(2020JJ5251)和国家自然科学基金青年基金项目(41701366)资助
详细信息
    作者简介:

    曾春阳(1988− ),女,湖南衡阳人,硕士研究生,主要从事土壤重金属污染修复的研究。E-mail: 276683627@qq.com

    通讯作者:

    E-mail: yyss0212@163.com

  • 中图分类号: S154

Comparison of Helianthus annuus L. and Ixeris polycephala Cass for Cd and Zn Activation Mechanisms in Rhizosphere Soil and Remediation Potential

  • 摘要:   目的  研究油葵和苦荬菜根际土壤固、液相对镉(Cd)和锌(Zn)的活化机制,比较两种植物在轻、中度复合污染农田的修复潜力。  方法  通过大田试验种油葵和苦荬菜,测定成熟期土壤的pH值、有机酸、重金属总量及其生物有效性;测定土壤溶液中的溶解性有机质(DOM)、主要离子、水溶态重金属及其形态分布;测定植物各部位中重金属的浓度及形态,通过计算重金属在植物中的富集系数(BCF)和转运系数(TF),比较两种植物对土壤重金属污染的修复潜力。  结果  油葵和苦荬菜根系分泌的低分子有机酸均使根际土壤pH值下降明显,显著低于非根际土壤(P < 0.05);苦荬菜根际土中低分子有机酸及DOM的浓度显著高于油葵根际土(P < 0.05)。两种植物根际土壤溶液中的Cd以离子态和DOM结合态为主,Zn以离子态为主;两种植物根际土壤中有效态的Cd差异不显著,油葵根际有效态Zn显著高于苦荬菜;两种植物根际土壤的Zn和Cd有效态与土壤溶液中Cd-DOM和Zn-DOM呈显著相关。苦荬菜根对重金属的富集能力较强,但油葵地上部分能吸收转运更多的Cd和Zn,并在叶中以毒性较低的不溶性磷酸盐结合态和草酸结合态富集。  结论  两种植物根际分泌的有机酸可以增加根际土壤中的Cd-DOM和Zn-DOM的浓度,提高土壤中的Cd和Zn的有效性,苦荬菜根际对重金属有较强的活化能力,但油葵地上部分对Cd和Zn的吸收转运能力更强。两种植物都具有较强的土壤重金属修复潜力,但从经济角度出发,油葵更适合现阶段我国农田重金属污染的修复。
  • 图  1  土壤中的有机酸含量

    不同字母表示不同处理间存在显著差异(P < 0.05)。IRS:苦荬菜根际土; SRS:油葵根际土; INS:苦荬菜非根际土;SNS:油葵非根际土

    Figure  1.  Organic acid contents in soil

    图  2  土壤中的总Cd和Zn浓度及CaCl2浸提态Cd和CaCl2浸提态Zn浓度

    不同字母表示不同处理间存在显著差异(P < 0.05)。IRS:苦荬菜根际土; SRS:油葵根际土; INS:苦荬菜非根际土;SNS:油葵非根际土

    Figure  2.  Total concentration of Cd and Zn and CaCl2-extractable concentration of Cd and Zn in soil

    图  3  植物中的Cd和Zn浓度及其不同化学形态占比

    不同字母表示不同处理间存在显著差异(P < 0.05)。IL:苦荬菜地上部分;SF:花盘; SL:油葵叶;ST:油葵茎;IR:苦荬菜根;SR:油葵根

    Figure  3.  Concentration and chemical speciation percentage of Cd and Zn in plants

    图  4  油葵和苦荬菜的根际过程对土壤中的Cd和Zn吸收积累的影响的结构方程模型

    注:实线箭头和虚线箭头分别表示显著和不显著的关系,与箭头方向相同的相邻数字是路径系数,路径系数分别表示正相关关系和负相关关系,箭头的宽度与路径系数绝对值成正比。每个变量所解释的方差所占的比例r2值表示。反映因素的重要性。显著水平表示为* P < 0.05,** P < 0.01,*** P < 0.001。

    Figure  4.  Structural Equation Modeling(SEM) of effects of rhizosphere processes between sunflower and Ixeris Polycephala Cass to Cd and Zn uptake and accumulation in soil

    表  1  供试土壤基本理化性质

    Table  1.   Physical-chemical characteristics of contaminated soil

    土壤理化性质
    Soil property
    pH
    Cd
    (mg kg−1)

    Zn
    (mg kg−1)

    Pb
    (mg kg−1)

    Cu
    (mg kg−1)
    土壤有机质
    Soil organic matter
    (g kg−1)
    阳离子交换量
    CEC
    (cmol kg−1)
    供试土壤5.24 ± 0.061.005 ± 0.21244.37 ± 12.6573.14 ± 2.3469.5 ± 3.7849.83 ± 1.0215.58 ± 0.87
    中国土壤环境质量标准
    (试行)(GB 15618—2018)[21]
    ≤ 5.500.302008050
      注:表中数值为土壤样品平均值 ± 标准差 (n = 5).
    下载: 导出CSV

    表  2  植物根际和非根际土壤溶液的理化特性

    Table  2.   Physicochemical properties of plant rhizosphere and non-rhizosphere soil solutions

    土壤类型
    Soil type
    pH值DOM
    (mg kg−1)
    Cd
    (μg L−1)
    Pb
    (μg L−1)
    Cu
    ( mg L−1)
    Zn
    ( mg L−1)
    IRS4.52 ± 0.01 bc81.99 ± 8.98 a4.23 ± 0.12 a2.60 ± 0.34 a0.02 ± 0.00 a0.47 ± 0.05 a
    SRS4.76 ± 0.05 a35.60 ± 0.83 c2.27 ± 0.84 c1.88 ± 0.38 a0.01 ± 0.00 a0.33 ± 0.02 a
    INS4.68 ± 0.07 ab64.73 ± 1.12 b2.77 ± 0.23 bc2.06 ± 0.25 a0.01 ± 0.00 a0.37 ± 0.11 a
    SNS4.33 ± 0.20 c60.25 ± 10.08 b3.40 ± 0.61 ab3.34 ± 1.52 a0.01 ± 0.00 a0.78 ± 0.35 a
    F
    (mg L−1)
    Cl
    (mg L−1)
    NO2
    (mg L−1)
    NO3
    (mg L−1)
    PO43−
    (mg L−1)
    SO42−
    (mg L−1)
    IRS1.05 ± 0.09 a2.04 ± 0.32 a0.42 ± 0.15 a175.74 ± 37.25 a0.30 ± 0.30 a20.69 ± 5.17 a
    SRS0.70 ± 0.10 a2.74 ± 1.64 a0.23 ± 0.06 a18.54 ± 2.94 b50.28 ± 9.23 a
    INS0.66 ± 0.16 a1.76 ± 0.46 a0.32 ± 0.03 a252.95 ± 41.97 a0.15 ± 0.15 a20.74 ± 4.39 a
    SNS:1.24 ± 0.30 a2.48 ± 1.32 a0.16 ± 0.02 a49.93 ± 23.55 b0.20 ± 0.20 a56.15 ± 23.09 a
      注:同一列中不同字母表示不同处理间存在显著差异(P < 0.05)。IRS:苦荬菜根际土;SRS:油葵根际土;INS:苦荬菜非根际土;SNS:油葵非根际土;−:低于检测限。
    下载: 导出CSV

    表  3  采用Visual MINTEQ 3.0计算苦荬菜和向日葵根际和非根际土壤溶液中Cd和Zn的形态的平均浓度和占比

    Table  3.   Average concentrations and proportions of speciation of Cd and Zn in the rhizosphere and non- rhizosphere soil solution of Ixeris polycephala Cass and sunflower experiments calculated by Visual MINTEQ 3.0

    苦荬菜根际土
    Rhizosphere soil of Ixeris
    polycephala Cass
    苦荬菜非根际土
    Non-rhizosphere soil of
    Ixeris polycephala Cass
    油葵根际土
    Rhizosphere soil of
    sunflower
    油葵非根际土
    Non-rhizosphere soil of
    sunflower
    浓度
    Concentration
    (mg kg-1)
    占比
    Proportion
    (%)
    浓度
    Concentration
    (mg kg-1
    占比
    Proportion
    (%)
    浓度
    Concentration
    (mg kg-1
    占比
    Proportion
    (%)
    浓度
    Concentration
    (mg kg-1
    占比
    Proportion
    (%)
    Cd2+ 2.06 48.81 1.19 42.87 1.34 58.89 2.11 61.92
    CdF+ 0.0013 0.03 0.0006 0.02 0.0007 0.03 0.0017 0.05
    CdCl+ 0.01 0.21 0.0044 0.16 0.01 0.35 0.01 0.33
    CdSO4 (aq) 0.06 1.36 0.03 1.2 0.1 4.54 0.17 4.94
    Cd(SO4)22− 0.0007 0.03 0.0014 0.04
    CdNO2+ 0.0013 0.03 0.0006 0.02 0.0005 0.02 0.0003 0.01
    CdNO3+ 0.01 0.34 0.01 0.43 0.0011 0.05 0.0044 0.13
    Cd-DOM 2.08 49.21 1.53 55.31 0.82 36.1 1.11 32.58
    Zn2+ 387.99 82.55 297.92 80.52 274.13 83.07 648.1 83.09
    ZnF+ 0.33 0.07 0.15 0.04 0.17 0.05 0.62 0.08
    ZnCl+ 0.05 0.01 0.07 0.02 0.08 0.01
    ZnSO4 (aq) 10.06 2.14 7.81 2.11 19.7 5.97 48.28 6.19
    Zn(SO4)22− 0.1 0.03 0.23 0.03
    ZnNO3+ 2.16 0.46 2.33 0.63 0.17 0.05 1.01 0.13
    Zn-DOM 69.42 14.77 61.72 16.68 35.71 10.82 81.67 10.47
      注:−表示低于检测限。
    下载: 导出CSV

    表  4  油葵和苦荬菜的富集系数及转运系数

    Table  4.   The bioconcentration factor and transport factor of sunflower and Ixeris Polycephala Cass

    植物部位
    Plant parts
    Cd富集系数
    Cd Bioconcentration factor
    Zn富集系数
    Zn Bioconcentration factor
    植物部位
    Plant parts
    Cd转运系数
    Cd Transport factor
    Zn转运系数
    Zn Transport factor
    IR 7.37 ± 0.66 bc 1.18 ± 0.08 bcd IL 1.77 ± 0.16 b 1.21 ± 0.13 bc
    IL 13.00 ± 1.48 ab 1.43 ± 0.16 bc SL 3.71 ± 0.45 a 4.66 ± 0.70 a
    SR 4.76 ± 0.49 c 0.96 ± 0.05 cd ST 1.41 ± 0.09 b 2.20 ± 0.14 b
    SL 17.92 ± 3.43 a 4.43 ± 0.50 a SF 1.07 ± 0.07 b 0.38 ± 0.05 c
    ST 6.80 ± 1.07 bc 2.21 ± 0.16 b
    SF 5.04 ± 0.17 c 0.36 ± 0.03 d
      注:不同字母表示植物各部位存在显著差异(P < 0.05)。IL:苦荬菜地上部分;SF:花盘; SL:油葵叶;ST:油葵茎;IR:苦荬菜根;SR:油葵根。
    下载: 导出CSV
  • [1] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689 − 1692. doi: 10.11654/jaes.2017-1220
    [2] Mahar A, Wang P, Ali A, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review[J]. Ecotoxicology and Environmental Safety, 2016, 126: 111 − 121. doi: 10.1016/j.ecoenv.2015.12.023
    [3] Xiong T, Yuan X Z, Wang H, et al. Highly efficient removal of diclofenac sodium from medical wastewater by Mg/Al layered double hydroxide-poly(m-phenylenediamine) composite[J]. Chemical Engineering Journal, 2019, 366: 83 − 91. doi: 10.1016/j.cej.2019.02.069
    [4] Sheoran V, Sheoran A S, Poonia P. Factors affecting phytoextraction: A review[J]. Pedosphere, 2016, 26(2): 148 − 166. doi: 10.1016/S1002-0160(15)60032-7
    [5] Borggaard O K, Holm P E, Strobel B W. Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review[J]. Geoderma, 2019, 343: 235 − 246. doi: 10.1016/j.geoderma.2019.02.041
    [6] Almaroai Y A, Usman A R A, Ahmad M, et al. Effects of synthetic chelators and low-molecular-weight organic acids on chromium, copper, and arsenic uptake and translocation in maize (Zea maysL. )[J]. Soil Science, 2012, 177(11): 655 − 663. doi: 10.1097/SS.0b013e31827ba23f
    [7] Niu H, Leng Y F, Li X C, et al. Behaviors of cadmium in rhizosphere soils and its interaction with microbiome communities in phytoremediation[J]. Chemosphere, 2021, 269: 128765. doi: 10.1016/j.chemosphere.2020.128765
    [8] Zhan J, Huang H G, Yu H Y, et al. Characterization of dissolved organic matter in the rhizosphere of phytostabilizer Athyrium wardii (Hook. ) involved in enhanced metal accumulation when exposed to Cd and Pb co-contamination[J]. Environmental Pollution, 2022, 266(Pt 2): 115196.
    [9] 李 颢, 陈敬龙, 段华泰, 等. 工业和农业污染稻田土壤重金属的赋存形态及水稻吸收运移比较[J]. 土壤通报, 2022, 53(1): 204 − 212. doi: 10.19336/j.cnki.trtb.2021030905
    [10] 陈 伟, 崔亚茹, 杨 洋, 等. 苦荞根系分泌有机酸对低氮胁迫的响应机制[J]. 土壤通报, 2019, 50(1): 149 − 156. doi: 10.19336/j.cnki.trtb.2019.01.23
    [11] 孙瑞莲, 周启星. 高等植物金属抗性中有机酸的作用及其机理[J]. 生态学杂志, 2006, 25(10): 1275 − 1279. doi: 10.3321/j.issn:1000-4890.2006.10.023
    [12] 袁钒淇, 袁进喜, 宋金凤, 等. Cd胁迫下长白落叶松幼苗根系有机酸的分泌研究[J]. 土壤通报, 2019, 50(5): 1218 − 1225. doi: 10.19336/j.cnki.trtb.2019.05.30
    [13] 李欣雨, 刘函亦, 薛少琪, 等. 几种绿肥的根系分泌物对土壤锌的活化效应[J]. 中国土壤与肥料, 2022, (1): 81 − 89. doi: 10.11838/sfsc.1673-6257.20512
    [14] Gonzaga M I, Ma L Q, Santos J A, et al. Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns[J]. Science of the Total Environment, 2009, 407(16): 4711 − 4716. doi: 10.1016/j.scitotenv.2009.04.037
    [15] Kim K R, Owens G, Naidu R, et al. Influence of plant roots on rhizosphere soil solution composition of long-term contaminated soils[J]. Geoderma, 2010, 155(1-2): 86 − 92. doi: 10.1016/j.geoderma.2009.11.028
    [16] Li T Q, Xu Z H, Han X, et al. Characterization of dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii and its effect on the mobility of zinc[J]. Chemosphere, 2012, 88(5): 570 − 576. doi: 10.1016/j.chemosphere.2012.03.031
    [17] Knight B, Zhao F J, McGrath S P, et al. Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution[J]. Plant and Soil, 1997, 197(1): 71 − 78. doi: 10.1023/A:1004255323909
    [18] 焦宏哲, 李 欢, 陈 惠, 等. 增温、施氮对中亚热带杉木林土壤可溶性有机质的影响[J]. 土壤学报, 2020, 57(5): 1249 − 1258.
    [19] 韦 婧, 宋 静, 黄玉娟, 等. 溶解性富里酸对土壤中多环芳烃迁移的影响[J]. 土壤学报, 2013, 50(2): 230 − 236. doi: 10.11766/trxb201205200184
    [20] Aiken G R, Hsu-Kim H, Ryan J N. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids[J]. Environmental Science Technology, 2011, 45(8): 3196 − 3201. doi: 10.1021/es103992s
    [21] 土壤环境质量农用地土壤污染风险管控标准(GB 15618-2018)(试行)[M]. 北京: 生态环境部、国家市场监督管理总局, 2018.
    [22] 廉梅花. 根际土壤中重金属的活化因素及作用机理研究[D]. 沈阳: 东北大学, 2016.
    [23] Li T Q, Tao Q, Liang C F, et al. Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii[J]. Environmental Pollution, 2013, 182: 248 − 255. doi: 10.1016/j.envpol.2013.07.025
    [24] Milne C J, Kinniburgh D G, van Riemsdijk W H, et al. Generic NICA-Donnan model parameters for metal-ion binding by humic substances[J]. Environmental Science Technology 2003, 37(5): 958-971.
    [25] Cornu J Y, Schneider A, Jezequel K, et al. Modelling the complexation of Cd in soil solution at different temperatures using the UV-absorbance of dissolved organic matter[J]. Geoderma, 2011, 162: 65 − 70. doi: 10.1016/j.geoderma.2011.01.005
    [26] Zeng X Y, Zou D S, Wang A D, et al. Remediation of cadmium-contaminated soils using Brassica napus: Effect of nitrogen fertilizers[J]. Journal of Environmental Management, 2020, 255: 109885. doi: 10.1016/j.jenvman.2019.109885
    [27] 颜世红, 吴春发, 胡友彪, 等. 典型土壤中有效态镉CaCl2提取条件优化研究[J]. 中国农学通报, 2013, 29(9): 99 − 104. doi: 10.3969/j.issn.1000-6850.2013.09.018
    [28] Zhang X F, Hu Z H, Yan T X, et al. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays[J]. Ecotoxicology and Environmental Safety, 2019, 171(APR.): 352 − 360.
    [29] 杨 洋, 陈志鹏, 黎红亮, 等. 两种农业种植模式对重金属土壤的修复潜力[J]. 生态学报, 2016, 36(3): 688 − 695.
    [30] 江玉平. 不同烟草品种根际土壤的pH和磷素状况研究[J]. 土壤通报, 1998, 29(4): 171 − 172. doi: 10.19336/j.cnki.trtb.1998.04.010
    [31] Luo J, Yin D X, Cheng H, et al. Plant induced changes to rhizosphere characteristics affecting supply of Cd to Noccaea caerulescens and Ni to Thlaspi goesingense[J]. Environmental Science Technology, 2018, 52(9): 5085 − 5093. doi: 10.1021/acs.est.7b04844
    [32] Tanwir K, Akram M S, Masood S, et al. Cadmium-induced rhizospheric pH dynamics modulated nutrient acquisition and physiological attributes of maize (Zea mays L. )[J]. Environmental Science and Pollution Research, 2015, 22(12): 9193 − 9203.
    [33] Antoniadis V, Levizou E, Shaheen S M, et al. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review[J]. Earth-Science Reviews, 2017, 171: 621 − 645. doi: 10.1016/j.earscirev.2017.06.005
    [34] Li T Q, Di Z D, Islam E, et al. Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation[J]. Journal of Hazardous Materials 2011, 185(2-3): 818-823.
    [35] McGrath S P, Shen Z G, Zhao F J. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils[J]. Plant and Soil, 1997, 188(1): 153 − 159. doi: 10.1023/A:1004248123948
    [36] Ubeynarayana N, Jeyakumar P, Bishop P, et al. Effect of soil cadmium on root organic acid secretion by forage crops[J]. Environmental Pollution, 2021, 268: 115839. doi: 10.1016/j.envpol.2020.115839
    [37] 关天霞, 何红波, 张旭东, 等. 土壤中重金属元素形态分析方法及形态分布的影响因素[J]. 土壤通报, 2011, 42(2): 503 − 512. doi: 10.19336/j.cnki.trtb.2011.02.049
    [38] Hirsch D, Bani A. Cadmium speciation in soil solutions[J]. Journal of Environmental Quality, 1990, 19: 366 − 372.
    [39] Li T Q, Liang C F, Han X, et al. Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii[J]. Chemosphere, 2013, 91(7): 970 − 976. doi: 10.1016/j.chemosphere.2013.01.100
    [40] Chen Y L, Shi J L, Tian X H, et al. Impact of dissolved organic matter on Zn extractability and transfer in calcareous soil with maize straw amendment[J]. Journal of Soils and Sediments, 2018, 19(2): 774 − 784.
    [41] Lorenz S E, Hamon R E, Holm P E, et al. Cadmium and zinc in plants and soil solutions from contaminated soils[J]. Plant and Soil, 1997, 189(1): 21 − 31. doi: 10.1023/A:1004214923372
    [42] Sauv S, McBride M B, Hendershot W H. Ion-selective electrode measurements of copper(II) activity in contaminated soils[J]. Archives of Environmental Contamination and Toxicology, 1995, 29(3): 373 − 379. doi: 10.1007/BF00212503
    [43] Shenker M, Fan T W, Crowley D E. Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants[J]. Journal of Environmental Quality, 2001, 30(6): 2091 − 2098. doi: 10.2134/jeq2001.2091
    [44] 谢换换, 叶志鸿. 湿地植物根形态结构和泌氧与盐和重金属吸收、积累、耐性关系的研究进展[J]. 生态学杂志, 2021, 40(3): 864 − 875. doi: 10.13292/j.1000-4890.202103.011
    [45] Nan Z R, Li J J, Zhang J M, et al. Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions[J]. Science of The Total Environment, 2002, 285(1-3): 187 − 195. doi: 10.1016/S0048-9697(01)00919-6
    [46] 朱光旭, 肖化云, 郭庆军, 等. 铅锌尾矿污染区3种菊科植物体内重金属的亚细胞分布和化学形态特征[J]. 环境科学, 2017, 38(7): 3054 − 3060.
    [47] Sun Q, Wang X R, Ding S M, et al. Effects of interactions between cadmium and zinc on phytochelatin and glutathione production in wheat (Triticum aestivum L. )[J]. Environmental Toxicology and Chemistry, 2005, 20(2): 195 − 201. doi: 10.1002/tox.20095
    [48] Fu X P, Dou C M, Chen Y X, et al. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L[J]. Journal of Hazardous Materials, 2011, 186: 103 − 107. doi: 10.1016/j.jhazmat.2010.10.122
    [49] Lai H Y. Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential[J]. Chemosphere, 2015, 138: 370 − 376. doi: 10.1016/j.chemosphere.2015.06.047
    [50] Li X Y, Peng P Q, Long J, et al. Plant-induced insoluble Cd mobilization and Cd redistribution among different rice cultivars[J]. Journal of Cleaner Production, 2020, 256: 120494. doi: 10.1016/j.jclepro.2020.120494
    [51] 于少华, 孙伟之, 雷耔耘, 等. 葵花盘氨基酸成分的分析[J]. 吉林农业大学学报, 1986, (1): 15 − 17. doi: 10.13327/j.jjlau.1986.01.005
    [52] 郝俊峰. 蒙早苦荬菜化学成分的提取鉴定及动态积累规律研究[D]. 呼和浩特: 内蒙古农业大学, 2021.
    [53] Majumdar S, Sachdev S, Kundu R. Salicylic acid mediated reduction in grain cadmium accumulation and amelioration of toxicity in Oryza sativa L. cv Bandana[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111167. doi: 10.1016/j.ecoenv.2020.111167
    [54] Lukacova Z, Svubova R, Kohanova J, et al. Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development[J]. Plant Growth Regulation, 2013, 70(1): 89 − 103. doi: 10.1007/s10725-012-9781-4
    [55] Wu F B, Dong J, Qian Q Q, et al. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes[J]. Chemosphere, 2005, 60(10): 1437 − 1446. doi: 10.1016/j.chemosphere.2005.01.071
    [56] 敖礼林, 鄢用亮, 饶卫华. 稻田改种苦荬菜丰产优质增效栽培技术[J]. 科学种养, 2021, (2): 31 − 33. doi: 10.13270/j.cnki.kxzh.2021.02.012
    [57] Yang Y, Ge Y C, Zeng H Y, et al. Phytoextraction of cadmium-contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium[J]. Scientific Reports, 2017, 7(1): 7210. doi: 10.1038/s41598-017-05834-8
    [58] 饲料卫生标准(GB 13078-017)[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017.
    [59] Yang Y, Li H L, Peng L, et al. Assessment of Pb and Cd in seed oils and meals and methodology of their extraction[J]. Food Chemistry, 2016, 197: 482 − 488. doi: 10.1016/j.foodchem.2015.10.143
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  24
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 录用日期:  2022-07-03
  • 修回日期:  2022-06-23
  • 刊出日期:  2023-04-06

目录

    /

    返回文章
    返回